Characterization and Photometric Performance of the Hyper Suprime-Cam Software Pipeline

The Subaru Strategic Program (SSP) is an ambitious multi-band survey using the Hyper Suprime-Cam (HSC) on the Subaru telescope. The Wide layer of the SSP is both wide and deep, reaching a detection limit of i~26.0 mag. At these depths, it is challenging to achieve accurate, unbiased, and consistent photometry across all five bands. The HSC data are reduced using a pipeline that builds on the prototype pipeline for the Large Synoptic Survey Telescope. We have developed a Python-based, flexible framework to inject synthetic galaxies into real HSC images called SynPipe. Here we explain the design and implementation of SynPipe and generate a sample of synthetic galaxies to examine the photometric performance of the HSC pipeline. For stars, we achieve 1% photometric precision at i~19.0 mag and 6% precision at i~25.0 in the i-band. For synthetic galaxies with single-Sersic profiles, forced CModel photometry achieves 13% photometric precision at i~20.0 mag and 18% precision at i~25.0 in the i-band. We show that both forced PSF and CModel photometry yield unbiased color estimates that are robust to seeing conditions. We identify several caveats that apply to the version of HSC pipeline used for the first public HSC data release (DR1) that need to be taking into consideration. First, the degree to which an object is blended with other objects impacts the overall photometric performance. This is especially true for point sources. Highly blended objects tend to have larger photometric uncertainties, systematically underestimated fluxes and slightly biased colors. Second, >20% of stars at 22.5 21.5 mag.

[1]  Donald W. Sweeney,et al.  Large Synoptic Survey Telescope: From Science Drivers to Reference Design , 2008 .

[2]  E. Bertin,et al.  MODELING THE TRANSFER FUNCTION FOR THE DARK ENERGY SURVEY , 2014, 1411.0032.

[3]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[4]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[5]  E. Greisen,et al.  Representations of celestial coordinates in FITS , 2002, astro-ph/0207413.

[6]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[7]  C. B. D'Andrea,et al.  No Galaxy Left Behind: Accurate Measurements with the Faintest Objects in the Dark Energy Survey , 2015, 1507.08336.

[8]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[9]  Mark R. Calabretta,et al.  Representations of world coordinates in FITS , 2002, astro-ph/0207407.

[10]  Robert H. Lupton,et al.  An open source application framework for astronomical imaging pipelines , 2010, Astronomical Telescopes + Instrumentation.

[11]  Craig Loomis,et al.  Hyper Suprime-Cam , 2012, Other Conferences.

[12]  R. Ellis,et al.  COSMOS: Hubble Space Telescope Observations , 2006, astro-ph/0612306.

[13]  Sam T. Roweis,et al.  Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations , 2009, 0905.2979.

[14]  P. Astier,et al.  The brighter-fatter effect and pixel correlations in CCD sensors , 2014, 1402.0725.

[15]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[16]  J. E. Gunn,et al.  Astrophysically Motivated Bulge-Disk Decompositions of SDSS Galaxies , 2012, 1201.0763.

[17]  M. Bartelmann,et al.  Weak gravitational lensing , 2016, Scholarpedia.

[18]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[19]  Satoshi Miyazaki,et al.  The on-site quality-assurance system for Hyper Suprime-Cam: OSQAH , 2018 .

[20]  M. Dickinson,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3* , 1996 .

[21]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[22]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .

[23]  Song Huang,et al.  The Hyper Suprime-Cam Software Pipeline , 2017, 1705.06766.

[24]  P. Astier,et al.  Evidence for self-interaction of charge distribution in charge-coupled devices , 2015, 1501.01577.

[25]  Walter A. Siegmund,et al.  The Second Data Release of the Sloan Digital Sky Survey , 2004 .

[26]  J. Anthony Tyson,et al.  THE ELLIPTICITY DISTRIBUTION OF AMBIGUOUSLY BLENDED OBJECTS , 2014, 1406.1506.

[27]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[28]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[29]  Robert Armstrong,et al.  GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..

[30]  Aaron Roodman,et al.  THE THIRD GRAVITATIONAL LENSING ACCURACY TESTING (GREAT3) CHALLENGE HANDBOOK , 2013, 1308.4982.

[31]  P. A. Price,et al.  THE PAN-STARRS 1 PHOTOMETRIC REFERENCE LADDER, RELEASE 12.01 , 2013, 1303.3634.

[32]  R. Laureijs,et al.  Euclid: ESA's mission to map the geometry of the dark universe , 2012, Other Conferences.

[33]  T. Grav,et al.  PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.

[34]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.