Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases.

Human autoimmune diseases are thought to develop through a complex combination of genetic and environmental factors. Genome-wide linkage searches of autoimmune and inflammatory/immune disorders have identified a large number of non-major histocompatibility complex loci that collectively contribute to disease susceptibility. A comparison was made of the linkage results from 23 published autoimmune or immune-mediated disease genome-wide scans. Human diseases included multiple sclerosis, Crohn's disease, familial psoriasis, asthma, and type-I diabetes (IDDM). Experimental animal disease studies included murine experimental autoimmune encephalomyelitis, rat inflammatory arthritis, rat and murine IDDM, histamine sensitization, immunity to exogenous antigens, and murine lupus (systemic lupus erythematosus; SLE). A majority (approximately 65%) of the human positive linkages map nonrandomly into 18 distinct clusters. Overlapping of susceptibility loci occurs between different human immune diseases and by comparing conserved regions with experimental autoimmune/immune disease models. This nonrandom clustering supports a hypothesis that, in some cases, clinically distinct autoimmune diseases may be controlled by a common set of susceptibility genes.

[1]  J. Todd,et al.  Congenic mapping of the insulin-dependent diabetes (Idd) gene, Idd10, localizes two genes mediating the Idd10 effect and eliminates the candidate Fcgr1. , 1997, Journal of immunology.

[2]  K. Becker,et al.  Analysis of a sequenced cDNA library from multiple sclerosis lesions , 1997, Journal of Neuroimmunology.

[3]  N. Schork,et al.  Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice. , 1997, Immunity.

[4]  N. Rose Autoimmune diseases: tracing the shared threads. , 1997, Hospital practice.

[5]  John Blangero,et al.  A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2 , 1997, Nature Genetics.

[6]  N. D. Arnold,et al.  Localization of the gene for familial primary pulmonary hypertension to chromosome 2q31–32 , 1997, Nature Genetics.

[7]  N. Morton,et al.  A metric map of humans: 23,500 loci in 850 bands. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Gerhard,et al.  A follow-up report of a genome search for affective disorder predisposition loci in the Old Order Amish. , 1996, American journal of human genetics.

[9]  P. Deloukas,et al.  A Gene Map of the Human Genome , 1996, Science.

[10]  E. Fisher,et al.  Evidence that a locus for familial psoriasis maps to chromosome 4q , 1996, Nature Genetics.

[11]  J. Terwilliger,et al.  Two stage genome–wide search in inflammatory bowel disease provides evidence for susceptibility loci on chromosomes 3, 7 and 12 , 1996, Nature Genetics.

[12]  G. Lathrop,et al.  A genome-wide search for quantitative trait loci underlying asthma , 1996, Nature.

[13]  E. Wakeland,et al.  Interval mapping of quantitative trait loci controlling humoral immunity to exogenous antigens: evidence that non-MHC immune response genes may also influence susceptibility to autoimmunity. , 1996, Journal of immunology.

[14]  S. Hill,et al.  The pathogenesis of postinfectious myocarditis. , 1996, Clinical immunology and immunopathology.

[15]  Elaine F. Remmers,et al.  A genome scan localizes five non–MHC loci controlling collagen–induced arthritis in rats , 1996, Nature Genetics.

[16]  D. Littman,et al.  Natural resistance to HIV? , 1996, Nature.

[17]  P. Goodfellow,et al.  A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22 , 1996, Nature Genetics.

[18]  Leena Peltonen,et al.  A putative vulnerability locus to multiple sclerosis maps to 5p14–p12 in a region syntenic to the murine locus Eae2 , 1996, Nature Genetics.

[19]  J. Haines,et al.  A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex , 1996, Nature Genetics.

[20]  D. Hinds,et al.  A full genome search in multiple sclerosis , 1996, Nature Genetics.

[21]  R. S. Spielman,et al.  A genome–wide search for human non–insulin–dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2 , 1996, Nature Genetics.

[22]  John A Todd,et al.  Genetic Analysis of Autoimmune Disease , 1996, Cell.

[23]  J. Weissenbach,et al.  A genome-wide search for chromosomal loci linked to bipolar affective disorder in the Old Order Amish , 1996, Nature Genetics.

[24]  Jean Weissenbach,et al.  Mapping of a susceptibility locus for Crohn's disease on chromosome 16 , 1996, Nature.

[25]  E. Lander,et al.  Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results , 1995, Nature Genetics.

[26]  D. Baker,et al.  Genetic analysis of experimental allergic encephalomyelitis in mice. , 1995, Journal of immunology.

[27]  S. Korsmeyer,et al.  Bax-Deficient Mice with Lymphoid Hyperplasia and Male Germ Cell Death , 1995, Science.

[28]  J. Todd Genetic analysis of type 1 diabetes using whole genome approaches. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Holmdahl,et al.  Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis , 1995, Nature Genetics.

[30]  J. Ott,et al.  Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. , 1995, American journal of medical genetics.

[31]  W. Hickey,et al.  Multiple loci govern the bone marrow-derived immunoregulatory mechanism controlling dominant resistance to autoimmune orchitis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. E. Rowe,et al.  Linkage and association between insulin–dependent diabetes mellitus (IDDM) susceptibility and markers near the glucokinase gene on chromosome 7 , 1995, Nature Genetics.

[33]  A. Theofilopoulos The basis of autoimmunity: Part II. Genetic predisposition. , 1995, Immunology today.

[34]  K. Haskins,et al.  A diabetes-associated T-cell autoantigen maps to a telomeric locus on mouse chromosome 6. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  R. Balderas,et al.  Lupus susceptibility loci in New Zealand mice. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[36]  L. Field,et al.  A locus on chromosome 15q26 (IDDM3) produces susceptibility to insulin-dependent diabetes mellitus , 1994, Nature Genetics.

[37]  M. James,et al.  Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome llq , 1994, Nature.

[38]  J. Todd,et al.  A genome-wide search for human type 1 diabetes susceptibility genes , 1994, Nature.

[39]  P. Goodfellow,et al.  From the simple to the complex , 1994, Nature.

[40]  P. Marynen,et al.  Possible association of CD3 and CD4 polymorphisms with insulin‐dependent diabetes mellitus (IDDM) , 1994, Clinical and experimental immunology.

[41]  E. Wakeland,et al.  Polygenic control of susceptibility to murine systemic lupus erythematosus. , 1994, Immunity.

[42]  A. Bowcock,et al.  Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. , 1994, Science.

[43]  H. Coon,et al.  Genomic scan for genes predisposing to schizophrenia. , 1994, American journal of medical genetics.

[44]  D. Friedman,et al.  Neonatal hemochromatosis associated with maternal autoantibodies against Ro/SS-A and La/SS-B ribonucleoproteins. , 1993, American journal of diseases of children.

[45]  J. Uitto,et al.  Epitope mapping of type VII collagen. Identification of discrete peptide sequences recognized by sera from patients with acquired epidermolysis bullosa. , 1993, The Journal of clinical investigation.

[46]  J. Todd,et al.  Polygenic control of autoimmune diabetes in nonobese diabetic mice , 1993, Nature Genetics.

[47]  J. Todd,et al.  Locus controlling Bordetella pertussis-induced histamine sensitization (Bphs), an autoimmune disease-susceptibility gene, maps distal to T-cell receptor beta-chain gene on mouse chromosome 6. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Kekomäki,et al.  A new platelet alloantigen, Tua, on glycoprotein IIIa associated with neonatal alloimmune thrombocytopenia in two families , 1993, British journal of haematology.

[49]  Eric S. Lander,et al.  Genetic dissection of autoimmune type I diabetes in the BB rat , 1992 .

[50]  T. Lindahl,et al.  Growth retardation and immunodeficiency in a patient with mutations in the DNA ligase I gene , 1992, The Lancet.

[51]  C. Moy,et al.  The world of insulin-dependent diabetes mellitus: what international epidemiologic studies reveal about the etiology and natural history of IDDM. , 1989, Diabetes/metabolism reviews.

[52]  J. Faux,et al.  LINKAGE BETWEEN IMMUNOGLOBULIN E RESPONSES UNDERLYING ASTHMA AND RHINITIS AND CHROMOSOME 11q , 1989, The Lancet.

[53]  T. Mohandas,et al.  The poliovirus sensitivity (PVS) gene is on chromosome 19q12----q13.2. , 1988, Genomics.

[54]  D. Barton,et al.  The human U1-70K snRNP protein: cDNA cloning, chromosomal localization, expression, alternative splicing and RNA-binding. , 1987, Nucleic acids research.

[55]  P. Wise,et al.  Hereditary angioedema and thyroid autoimmunity. , 1987, Journal of clinical pathology.

[56]  T. Beaty,et al.  Evidence that autoimmunity in man is a Mendelian dominant trait. , 1986, American journal of human genetics.

[57]  H. Kunkel,et al.  Systemic lupus erythematosus with deficiency of the T4 epitope on T helper/inducer cells. , 1985, The New England journal of medicine.

[58]  S. Nagataki,et al.  Hereditary deficiency of OKT4-positive cells: studies for mode of inheritance and lymphocyte functions. , 1984, Immunology.

[59]  R. E. Click,et al.  Control of mouse hepatitis virus replication in macrophages by a recessive gene on chromosome 7. , 1984, Journal of immunology.

[60]  S. Lee,et al.  Familial deficiency of two subunits of the first component of complement. C1r and C1s associated with a lupus erythematosus-like disease. , 1978, Arthritis and rheumatism.

[61]  J. Turner,et al.  DOES T4 TOXICOSIS EXIST ? , 1975, The Lancet.