From LAr to L-ArBeO (L = He, Ne, Ar, HF): Switching on σ-hole effects in non-covalent interactions

[1]  S. Borocci,et al.  Classifying the chemical bonds involving the noble-gas atoms , 2020 .

[2]  Bing Xu,et al.  Enzymatic Noncovalent Synthesis. , 2020, Chemical reviews.

[3]  A. Frontera Noble Gas Bonding Interactions Involving Xenon Oxides and Fluorides , 2020, Molecules.

[4]  A. Frontera,et al.  Covalent and Non-covalent Noble Gas Bonding Interactions in XeFn Derivatives (n = 2–6): A Combined Theoretical and ICSD Analysis , 2020, Frontiers in Chemistry.

[5]  F. Pirani,et al.  Leading Interaction Components in the Structure and Reactivity of Noble Gases Compounds , 2020, Molecules.

[6]  J. Elguero,et al.  Not Only Hydrogen Bonds: Other Noncovalent Interactions , 2020, Crystals.

[7]  A. Frontera,et al.  σ/π-Hole noble gas bonding interactions: Insights from theory and experiment , 2020 .

[8]  J. Murray,et al.  Interaction and Polarization Energy Relationships in σ-Hole and π-Hole Bonding , 2020, Crystals.

[9]  Paola Antoniotti,et al.  Complexes of helium with neutral molecules: Progress toward a quantitative scale of bonding character , 2020, J. Comput. Chem..

[10]  S. Scheiner Forty years of progress in the study of the hydrogen bond , 2019, Structural Chemistry.

[11]  Paola Antoniotti,et al.  Noncovalent Complexes of the Noble‐Gas Atoms: Analyzing the Transition from Physical to Chemical Interactions , 2019, J. Comput. Chem..

[12]  S. Scheiner,et al.  Comparative Strengths of Tetrel, Pnicogen, Chalcogen, and Halogen Bonds and Contributing Factors , 2018, Molecules.

[13]  J. Murray,et al.  Molecular electrostatic potentials and noncovalent interactions , 2017 .

[14]  L. Brammer Halogen bonding, chalcogen bonding, pnictogen bonding, tetrel bonding: origins, current status and discussion. , 2017, Faraday discussions.

[15]  J. Piquemal,et al.  A Complete NCI Perspective: From New Bonds to Reactivity , 2016 .

[16]  Pavel Hobza,et al.  Computer Modeling of Halogen Bonds and Other σ-Hole Interactions. , 2016, Chemical reviews.

[17]  Pierangelo Metrangolo,et al.  The Halogen Bond , 2016, Chemical reviews.

[18]  M. Yáñez,et al.  Creating σ-holes through the formation of beryllium bonds. , 2015, Chemistry.

[19]  A. Frontera,et al.  Aerogen Bonding Interaction: A New Supramolecular Force? , 2015, Angewandte Chemie.

[20]  S. Borocci,et al.  Bonding Motifs of Noble-Gas Compounds As Described by the Local Electron Energy Density. , 2015, The journal of physical chemistry. A.

[21]  C. Gatti,et al.  Energetics of non-covalent interactions from electron and energy density distributions , 2015 .

[22]  Pierangelo Metrangolo,et al.  Definition of the halogen bond (IUPAC Recommendations 2013) , 2013 .

[23]  Timothy Clark,et al.  Halogen bonding and other σ-hole interactions: a perspective. , 2013, Physical chemistry chemical physics : PCCP.

[24]  Tian Lu,et al.  Multiwfn: A multifunctional wavefunction analyzer , 2012, J. Comput. Chem..

[25]  Kevin E. Riley,et al.  σ-Holes, π-holes and electrostatically-driven interactions , 2012, Journal of Molecular Modeling.

[26]  David J. Nesbitt,et al.  Definition of the hydrogen bond (IUPAC Recommendations 2011) , 2011 .

[27]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[28]  P. Taylor,et al.  A diagnostic for determining the quality of single‐reference electron correlation methods , 2009 .

[29]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[30]  K. Tang,et al.  The van der Waals potentials between all the rare gas atoms from He to Rn , 2003 .

[31]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[32]  F. Tao,et al.  Accurate ab initio potential energy surfaces of Ar–HF, Ar–H2O, and Ar–NH3 , 1994 .

[33]  F. Tao,et al.  Ab initio potential energy curves and binding energies of Ar2 and Mg2 , 1994 .

[34]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[35]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[36]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[37]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[38]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[39]  R. Parajuli Does the recent IUPAC definition on hydrogen bonding lead to new intermolecular interactions ? , 2016 .

[40]  Timothy Clark,et al.  σ-Holes: σ-Holes , 2013 .

[41]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg , 2011 .

[42]  David,et al.  Gaussian basis sets for use in correlated molecular calculations . Ill . The atoms aluminum through argon , 1999 .