FFT-based calibration method for 1.5 bit/stage pipelined ADCs

A fast Fourier transform FFT-based digital calibration method for 1.5 bit/stage pipeline analog-to-digital converter ADC is proposed in this paper. Capacitor mismatch and finite gain of the operational amplifier OPAMP can be overcome by the proposed calibration method. Given that the capacitor mismatch and the finite OPAMP gain cause the radix of all the stages of 1.5 bit/stage pipeline ADC to become unequal to 2, the FFT processor can be adopted to evaluate the actual radixes of all the stages and then generate new digital output to compensate for error caused by these non-ideal effects. Moreover, as capacitor mismatch and the finite gain of OPAMP can be compensated, low-gain OPAMP can be used in high-performance ADC to reduce power dissipation; a small capacitor can then be adopted to save on space. An example of a 10 bit 1.5 bit/stage pipelined ADC with only an 8 bit circuit performance is implemented in 0.18 µm TSMC CMOS process. Circuit measurement result reveals that the signal-to-noise-and-distortion ratio of 51.03 dB with 11 dB improvement after calibration can be achieved at the sample rate of 1 MHz. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Maher Jridi A subband FFT-based method for static errors compensation in Time-Interleaved ADCs , 2011, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS).

[2]  Horst Zimmermann,et al.  A design example of a 65 nm CMOS operational amplifier: Research Articles , 2007 .

[3]  Un-Ku Moon,et al.  Background calibration techniques for multistage pipelined ADCs with digital redundancy , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[4]  Hung-Chih Liu,et al.  A 15-b 40-MS/s CMOS pipelined analog-to-digital converter with digital background calibration , 2005 .

[5]  J. Bjornsen,et al.  A cost-efficient high-speed 12-bit pipeline ADC in 0.18-/spl mu/m digital CMOS , 2005, IEEE Journal of Solid-State Circuits.

[6]  Behzad Razavi,et al.  A 12-Bit 200-MHz CMOS ADC , 2009, IEEE Journal of Solid-State Circuits.

[7]  Horst Zimmermann,et al.  A design example of a 65 nm CMOS operational amplifier , 2007, Int. J. Circuit Theory Appl..

[8]  Stephen H. Lewis,et al.  Immediate Calibration of Operational Amplifier Gain Error in Pipelined ADCs Using Extended Correlated Double Sampling , 2013, IEEE Journal of Solid-State Circuits.

[9]  Jan Van der Spiegel,et al.  Background Calibration With Piecewise Linearized Error Model for CMOS Pipeline A/D Converter , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Paul R. Gray,et al.  A power optimized 13-b 5 Msamples/s pipelined analog-to-digital converter in 1.2 /spl mu/m CMOS , 1996 .

[11]  Swapna Banerjee,et al.  Radix based digital calibration technique for pipelined ADC using Nyquist sampling of sinusoid , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[12]  Tai-Haur Kuo,et al.  Capacitor-Swapping Cyclic A/D Conversion Techniques With Reduced Mismatch Sensitivity , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  Bang-Sup Song,et al.  A 15-bit Linear 20-MS/s Pipelined ADC Digitally Calibrated With Signal-Dependent Dithering , 2008, IEEE Journal of Solid-State Circuits.

[14]  Stephen H. Lewis,et al.  A 10-b 20-Msample/s analog-to-digital converter , 1992 .

[15]  Ramjee Prasad,et al.  OFDM for Wireless Multimedia Communications , 1999 .

[16]  Seung-Hoon Lee,et al.  A 10 b 25 MS-s 4.8 mW 0.13 µm CMOS ADC with switched-bias power-reduction techniques , 2009 .

[17]  Shuenn-Yuh Lee,et al.  VLSI implementation of programmable FFT architectures for OFDM communication system , 2006, IWCMC '06.