Current injection efficiency of InGaAsN quantum-well lasers

The concept of below-threshold and above-threshold current injection efficiency of quantum well (QW) lasers is clarified. The analysis presented here is applied to the current injection efficiency of 1200nm emitting InGaAs and 1300nm emitting InGaAsN QW lasers. The role of heavy-hole leakage in the InGaAsN QW lasers is shown to be significant in determining the device temperature sensitivity. The current injection efficiency of QW lasers with large monomolecular recombination processes is shown to be less temperature sensitive. Excellent agreement between theory and experiment is obtained for both the 1200nm emitting InGaAs QW and the 1300nm emitting InGaAsN QW lasers. Suppression of thermionic carrier escape processes in the InGaAsN QW results in high performance 1300nm emitting lasers operating up to high temperature.

[1]  Nelson Tansu,et al.  Improved photoluminescence of InGaAsN-(In)GaAsP quantum well by organometallic vapor phase epitaxy using growth pause annealing , 2003 .

[2]  Larry A. Coldren,et al.  Theoretical gain in strained InGaAs/AlGaAs quantum wells including valence‐band mixing effects , 1990 .

[3]  Wolfgang Stolz,et al.  Reduced threshold current densities of (GaIn)(NAs)/GaAs single quantum well lasers for emission wavelengths in the range 1.28-1.38 /spl mu/m , 1999 .

[4]  S. Forrest,et al.  High T/sub 0/ long-wavelength InGaAsN quantum-well lasers grown by GSMBE using a solid arsenic source , 2002, IEEE Photonics Technology Letters.

[5]  B. Jogai Valence‐band offset in strained GaAs‐InxGa1−xAs superlattices , 1991 .

[6]  Scott W. Corzine,et al.  Temperature analysis and characteristics of highly strained InGaAs-GaAsP-GaAs (/spl lambda/ > 1.17 /spl mu/m) quantum-well lasers , 2002 .

[7]  L. Mawst,et al.  Low-threshold strain-compensated InGaAs(N) (/spl lambda/ = 1.19-1.31 μm) quantum-well lasers , 2002, IEEE Photonics Technology Letters.

[8]  I. White,et al.  Influence of localized nitrogen states on material gain in InGaAsN/GaAs quantum-well lasers , 2001 .

[9]  Kent D. Choquette,et al.  Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um , 2000 .

[10]  L. Mawst,et al.  Temperature sensitivity of 1300-nm InGaAsN quantum-well lasers , 2002, IEEE Photonics Technology Letters.

[11]  Martin D. Dawson,et al.  Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content , 2000 .

[12]  James J. Coleman,et al.  Strained-layer quantum well heterostructure lasers , 1992 .

[13]  R. Kazarinov,et al.  Analysis of T0 in 1.3 μm multi‐quantum‐well and bulk active lasers , 1995 .

[14]  Peter S. Zory,et al.  Quantum well lasers , 1993 .

[15]  P. Smowton,et al.  The differential efficiency of quantum well lasers , 1996, Conference Digest. 15th IEEE International Semiconductor Laser Conference.

[16]  Eric Daniel Jones,et al.  Laser gain and threshold properties in compressive-strained and lattice-matched GaInNAs/GaAs quantum wells , 1999 .

[17]  P. Dapkus,et al.  Optimizing N-p-n and P-n-p heterojunction bipolar transistors for speed , 1987, IEEE Transactions on Electron Devices.

[18]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[19]  Nelson Tansu,et al.  Experimental evidence of carrier leakage in InGaAsN quantum-well lasers , 2003 .

[20]  Stephen J. Sweeney,et al.  The temperature dependence of 1.3- and 1.5-/spl mu/m compressively strained InGaAs(P) MQW semiconductor lasers , 1999 .

[21]  M. Pessa,et al.  1.32-μm GaInNAs-GaAs laser with a low threshold current density , 2002, IEEE Photonics Technology Letters.

[22]  Xiaodong Yang,et al.  Photoreflectance spectroscopy of strained (In)GaAsN/GaAs multiple quantum wells , 2002 .

[23]  James J. Coleman,et al.  Predicting diode laser performance , 1991, Photonics West - Lasers and Applications in Science and Engineering.

[24]  C. Harder,et al.  Carrier heating in ALGaAs single quantum well laser diodes , 1991 .

[25]  Harry H. Wieder,et al.  Band‐edge discontinuities of strained‐layer InxGa1−xAs/GaAs heterojunctions and quantum wells , 1989 .

[26]  Stephan W Koch,et al.  Semiconductor-Laser Fundamentals , 1999 .

[27]  Nelson Tansu,et al.  High-performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum well lasers by organometallic vapor phase epitaxy , 2003 .

[28]  Stanko Tomić,et al.  A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-/spl mu/m GaInNAs-based quantum-well lasers , 2002 .

[29]  Nelson Tansu,et al.  Low-threshold-current-density 1300-nm dilute-nitride quantum well lasers , 2002 .

[30]  John E. Bowers,et al.  Effects of carrier transport on injection efficiency and wavelength chirping in quantum-well lasers , 1993 .

[31]  L. Mawst,et al.  High-performance strain-compensated InGaAs-GaAsP-GaAs (/spl lambda/=1.17 μm) quantum well diode lasers , 2001, IEEE Photonics Technology Letters.

[32]  G. Taylor,et al.  Revisions to "Transport solution for SCH QW laser diodes" , 1998 .

[33]  A. Kasukawa,et al.  Improved Theory for Carrier Leakage and Diffusion in Multiquantum-well Semiconductor Lasers , 2000 .

[34]  J.S. Harris,et al.  Multiple-quantum-well GaInNAs-GaNAs ridge-waveguide laser diodes operating out to 1.4 /spl mu/m , 2002, IEEE Photonics Technology Letters.

[35]  Masayuki Ishikawa,et al.  High speed quantum-well lasers and carrier transport effects , 1992 .

[36]  L. Mawst,et al.  The role of hole leakage in 1300-nm InGaAsN quantum-well lasers , 2003 .

[37]  Kenichi Iga,et al.  Lasing Characteristics of Low-Threshold GaInNAs Lasers Grown by Metalorganic Chemical Vapor Deposition , 2001 .

[38]  Schneider,et al.  Thermionic emission and Gaussian transport of holes in a GaAs/AlxGa1-xAs multiple-quantum-well structure. , 1988, Physical review. B, Condensed matter.