Dielectric-Based Rear Surface Passivation Approaches for Cu(In,Ga)Se2 Solar Cells—A Review

This work received funding from the European Union’s H2020 research and innovation program under grant agreement No. 715027

[1]  Marika Edoff,et al.  Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts , 2013 .

[2]  Shigeru Niki,et al.  Lithographic fabrication of point contact with Al2O3 rear-surface-passivated and ultra-thin Cu(In,Ga)Se2 solar cells , 2018, Thin Solid Films.

[3]  Martina Schmid,et al.  Well-Controlled Dielectric Nanomeshes by Colloidal Nanosphere Lithography for Optoelectronic Enhancement of Ultrathin Cu(In,Ga)Se2 Solar Cells. , 2016, ACS applied materials & interfaces.

[4]  Thomas Feurer,et al.  Progress in thin film CIGS photovoltaics – Research and development, manufacturing, and applications , 2017 .

[5]  Marika Edoff,et al.  Bifacial Cu(In,Ga)Se2 solar cells using hydrogen‐doped In2O3 films as a transparent back contact , 2018, Progress in Photovoltaics: Research and Applications.

[6]  Uli Lemmer,et al.  Optoelectrical improvement of ultra‐thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer , 2016 .

[7]  Martin A. Green,et al.  Solar cell efficiency tables (version 52) , 2018, Progress in Photovoltaics: Research and Applications.

[8]  S. Nishiwaki,et al.  Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules , 2012, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[9]  Marika Edoff,et al.  Effect of different Na supply methods on thin Cu(In,Ga)Se2 solar cells with Al2O3 rear passivation layers , 2018, Solar Energy Materials and Solar Cells.

[10]  Marika Edoff,et al.  Potential‐induced optimization of ultra‐thin rear surface passivated CIGS solar cells , 2014 .

[11]  Bart Vermang,et al.  Optical Lithography Patterning of SiO 2 Layers for Interface Passivation of Thin Film Solar Cells , 2018, Solar RRL.

[12]  U. Zimmermann,et al.  Rear Contact Passivation for High Bandgap Cu(In, Ga)Se2 Solar Cells With a Flat Ga profile , 2017, IEEE Journal of Photovoltaics.

[13]  E. Fortunato,et al.  Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer , 2018 .

[14]  Marika Edoff,et al.  Improved Rear Surface Passivation of Cu(In,Ga)Se$_{\bf 2}$ Solar Cells: A Combination of an Al$_{\bf 2}$O $_{\bf 3}$ Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts , 2014, IEEE Journal of Photovoltaics.

[15]  Robert Mertens,et al.  Approach for Al2O3 rear surface passivation of industrial p‐type Si PERC above 19% , 2012 .

[16]  D. Flandre,et al.  Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells , 2014, Progress in photovoltaics.

[17]  Jan Schmidt,et al.  Effective passivation of crystalline silicon surfaces by ultrathin atomic-layer-deposited TiOx layers , 2017 .

[18]  L. Stolt,et al.  The effect of Ga-grading in CIGS thin film solar cells , 2005 .

[19]  Wmm Erwin Kessels,et al.  Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells , 2012 .

[20]  Wei Huang,et al.  Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System , 2017, Nanoscale Research Letters.

[21]  Denis Flandre,et al.  Investigating the electronic properties of Al2O3/Cu(In,Ga)Se2 interface , 2015 .

[22]  Denis Flandre,et al.  Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells , 2015 .

[23]  G. Brammertz,et al.  A study to improve light confinement and rear-surface passivation in a thin-Cu(In, Ga)Se2 solar cell , 2019, Thin Solid Films.

[24]  Martina Schmid,et al.  Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns. , 2015, ACS nano.

[25]  Marika Edoff,et al.  Introduction of Si PERC Rear Contacting Design to Boost Efficiency of Cu(In,Ga)Se $_{\bf 2}$ Solar Cells , 2014, IEEE Journal of Photovoltaics.