On the number of bipolar Boolean functions

A Boolean function is bipolar iff it is monotone or antimonotone in each of its arguments. We investigate the number b(n) of n-ary bipolar Boolean functions. We present an (almost) closed-form expression for b(n) that uses the number a(n) of antichain covers of an n-element set. This is closely related to Dedekind’s problem, which can be rephrased as determining the number d(n) of Boolean functions that are monotone in all arguments. Indeed, a closedform solution of a(n) would directly yield a closed-form solution of d(n), suggesting that determining a(n) is a non-trivial problem of itself.

[1]  Stasys Jukna,et al.  Boolean Function Complexity Advances and Frontiers , 2012, Bull. EATCS.

[2]  BOOLEAN DIFFERENCES FOR THE MONOTONE FUNCTIONS OF THE ALGEBRA OF LOGIC , 1997 .

[3]  R. Dedekind,et al.  Über Zerlegungen von Zahlen Durch Ihre Grössten Gemeinsamen Theiler , 1897 .

[4]  Stefan Woltran,et al.  Relating the Semantics of Abstract Dialectical Frameworks and Standard AFs , 2011, IJCAI.

[5]  H. Moses A kernel of Gel’fand–Levitan type for the three‐dimensional Schrödinger equation , 1980 .

[6]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[7]  Andrzej Kisielewicz,et al.  A solution of Dedekind's problem on the number of isotone Boolean functions. , 1988 .

[8]  E. Gilbert Lattice Theoretic Properties of Frontal Switching Functions , 1954 .

[9]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[10]  Алексей Дмитриевич Коршунов,et al.  Монотонные булевы функции@@@Monotone Boolean functions , 2003 .

[11]  Hannes Strass,et al.  Analyzing the computational complexity of abstract dialectical frameworks via approximation fixpoint theory , 2015, Artif. Intell..

[12]  Claude E. Shannon,et al.  The Number of Two‐Terminal Series‐Parallel Networks , 1942 .

[13]  Stefan Woltran,et al.  Abstract Dialectical Frameworks , 2010, KR.

[14]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[15]  Tamon Stephen,et al.  Counting inequivalent monotone Boolean functions , 2012, Discret. Appl. Math..

[16]  Hannes Strass Expressiveness of Two-Valued Semantics for Abstract Dialectical Frameworks , 2015, J. Artif. Intell. Res..

[17]  G. Markowsky,et al.  On Dedekind’s problem: the number of isotone Boolean functions. II , 1975 .

[18]  Anthony J. Macula,et al.  Covers of a Finite Set , 1994 .

[19]  Goran Kilibarda,et al.  Antichains of Multisets , 2004 .