Estimating the Control Error in discretized PDE-constrained Optimization

In this article we develop an a posteriori error estimator for discretized optimal control problems. We are interested in estimating the error in the control variable, measured in a natural norm. We prove an error representation formula involving only quantities at hand in a second-order optimiza- tion iteration, supposing a strong form of second-order sufficient condition. Possible generalization to the control-constrained case is indicated.

[1]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[2]  Ricardo H. Nochetto,et al.  Fully Localized A posteriori Error Estimators and Barrier Sets for Contact Problems , 2004, SIAM J. Numer. Anal..

[3]  A. Haraux How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities , 1977 .

[4]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[5]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[6]  Arnd Rösch,et al.  Error Estimates for Parabolic Optimal Control Problems with Control Constraints , 2004 .

[7]  Andreas Veeser,et al.  Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..

[8]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[9]  Fredi Tröltzsch,et al.  Error estimates for linear-quadratic elliptic control problems , 2002, Analysis and Optimization of Differential Systems.

[10]  Roland Becker,et al.  A posteriori error estimation for finite element discretization of parameter identification problems , 2004, Numerische Mathematik.

[11]  K. Malanowski Convergence of approximations vs. regularity of solutions for convex, control-constrained optimal-control problems , 1982 .

[12]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[13]  J. F. Bonnans,et al.  Second-Order Analysis for Control Constrained Optimal Control Problems of Semilinear Elliptic Systems , 1998 .

[14]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[15]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[16]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods for Linear-Quadratic Elliptic Control Problems: Convergence Rates , 2005, SIAM J. Control. Optim..

[17]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[18]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[19]  J. Zowe,et al.  Second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems , 1979 .