Yield Estimation by Computing Probabilistic Hypervolumes

Parameter variations are inevitable in any IC process. Process steps such as oxidation, doping, molecular beam epitaxy, etc., are all fundamentally statistical in nature [1]. Design of functioning circuits and systems has traditionally relied heavily on the presumption that the law of large numbers [2] applies and that statistical averaging predominates over random variations – more precisely, that the statistical distributions of important process, geometrical, environmental, and electrical parameters cluster closely about their means. Unfortunately, with feature sizes having shrunk from 90 to 65 nm recently (with further scaling down to 45 and 32 nm predicted by the ITRS roadmap [3]), this assumption is no longer valid – in spite of efforts to control them [4, 5], large variations in process parameters are the norm today. This problem is most severe for circuits that try to use the minimum transistor size (e.g., memory circuits [6] for which chip area is of high priority). With transistors having become extremely small (e.g.: gates are only 10 molecules thick; minority dopants in the channel number in the 10s of atoms), small absolute variations in previous processes have become large relative ones. Lithography-related variability at nanoscales [5], which affect geometrical parameters such as effective length and width, further compound parameter variation problems.

[1]  Georges G. E. Gielen,et al.  Efficient multiobjective synthesis of analog circuits using hierarchical Pareto-optimal performance hypersurfaces , 2005, Design, Automation and Test in Europe.

[2]  Alberto L. Sangiovanni-Vincentelli,et al.  Steady-state methods for simulating analog and microwave circuits , 1990, The Kluwer international series in engineering and computer science.

[3]  W. Maly Dimension reduction procedure for the simplicial approximation approach to design centering , 1980 .

[4]  R. Heald,et al.  Variability in sub-100nm SRAM designs , 2004, ICCAD 2004.

[5]  David Blaauw,et al.  Parametric yield maximization using gate sizing based on efficient statistical power and delay gradient computation , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[6]  K. Krishna,et al.  Optimization Of Parametric Yield: A Tutorial , 1992, 1992 Proceedings of the IEEE Custom Integrated Circuits Conference.

[7]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[8]  R. Kielbasa,et al.  A study of stratified sampling in variance reduction techniques for parametric yield estimation , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[9]  Wojciech Maly,et al.  Design for manufacturability in submicron domain , 1996, ICCAD 1996.

[10]  M.L. Liou,et al.  Computer-aided analysis of electronic circuits: Algorithms and computational techniques , 1977, Proceedings of the IEEE.

[11]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[12]  Peng Li,et al.  Statistical Sampling-Based Parametric Analysis of Power Grids , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[13]  G. Hachtel,et al.  Computationally efficient yield estimation procedures based on simplicial approximation , 1978 .

[14]  Jaijeet S. Roychowdhury,et al.  Rapid Estimation of the Probability of SRAM Failure due to MOS Threshold Variations , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[15]  Kumaraswamy Ponnambalam,et al.  A unified approach to statistical design centering of integrated circuits with correlated parameters , 1999 .

[16]  Jaijeet S. Roychowdhury,et al.  An efficient, fully nonlinear, variability-aware non-monte-carlo yield estimation procedure with applications to SRAM cells and ring oscillators , 2008, 2008 Asia and South Pacific Design Automation Conference.

[17]  C. W. Gear,et al.  Numerical initial value problem~ in ordinary differential eqttations , 1971 .

[18]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[19]  E. Polak,et al.  Theoretical and computational aspects of the optimal design centering, tolerancing, and tuning problem , 1979 .

[20]  John W. Bandler,et al.  Efficient quadratic approximation for statistical design , 1989 .

[21]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[22]  Chris Toumazou,et al.  Trade-Offs in Analog Circuit Design , 2002 .

[23]  E. Seevinck,et al.  Static-noise margin analysis of MOS SRAM cells , 1987 .

[24]  George S. Moschytz,et al.  Trade-offs in analog circuit design : the designer's companion , 2002 .

[25]  Mohammed Ismail,et al.  Statistical Modeling for Computer-Aided Design of Mos VLSI Circuits , 1993 .

[26]  K. Singhal,et al.  Statistical design centering and tolerancing using parametric sampling , 1981 .

[27]  Kai Chang,et al.  Nonlinear statistical modeling and yield estimation technique for use in Monte Carlo simulations [microwave devices and ICs] , 2000 .

[28]  Rajiv V. Joshi,et al.  Mixture importance sampling and its application to the analysis of SRAM designs in the presence of rare failure events , 2006, 2006 43rd ACM/IEEE Design Automation Conference.

[29]  Kenneth S. Kundert,et al.  The designer's guide to SPICE and Spectre , 1995 .

[30]  L. J. Gallaher,et al.  Algorithm 440: A multidimensional Monte Carlo quadrature with adaptive stratified sampling [D1 , 1973, Commun. ACM.

[31]  K. Antreich,et al.  Design centering by yield prediction , 1982 .

[32]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[33]  Vladimir Zolotov,et al.  Parameterized block-based statistical timing analysis with non-Gaussian parameters, nonlinear delay functions , 2005, Proceedings. 42nd Design Automation Conference, 2005..

[34]  Sani R. Nassif,et al.  Modeling and analysis of manufacturing variations , 2001, Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169).

[35]  Stephen W. Director,et al.  A new methodology for the design centering of IC fabrication processes , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[36]  Chandramouli V. Kashyap,et al.  Block-based static timing analysis with uncertainty , 2003, ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat. No.03CH37486).

[37]  Jirí Vlach,et al.  Ellipsoidal method for design centering and yield estimation , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[38]  Michael T. Heath,et al.  Scientific Computing: An Introductory Survey , 1996 .

[39]  Sani R. Nassif,et al.  Characterizing Process Variation in Nanometer CMOS , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[40]  Andrew B. Kahng,et al.  Manufacturing-aware physical design , 2003, ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat. No.03CH37486).

[41]  Kaushik Roy,et al.  Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[42]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[43]  Rob A. Rutenbar,et al.  Circuit Analysis and Optimization Driven by WorstCase Distances , 2002 .

[44]  G. Hachtel The simplicial approximation approach to design centering , 1977 .

[45]  Guido Stehr,et al.  Performance trade-off analysis of analog circuits by normal-boundary intersection , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[46]  J. Hammersley,et al.  A new Monte Carlo technique: antithetic variates , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[47]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[48]  R. Brayton,et al.  Yield maximization and worst-case design with arbitrary statistical distributions , 1980 .

[49]  Sachin S. Sapatnekar,et al.  Statistical Timing Analysis Considering Spatial Correlations using a Single Pert-Like Traversal , 2003, ICCAD 2003.

[50]  Hany L. Abdel-Malek,et al.  The ellipsoidal technique for design centering and region approximation , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[51]  Kurt Antreich,et al.  Circuit analysis and optimization driven by worst-case distances , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..