Conformational and dynamic plasticity in substrate-binding proteins underlies selective transport in ABC importers

Substrate-binding proteins (SBPs) are associated with ATP-binding cassette importers and switch from an open to a closed conformation upon substrate binding, providing specificity for transport. We investigated the effect of substrates on the conformational dynamics of six SBPs and the impact on transport. Using single-molecule FRET, we reveal an unrecognized diversity of plasticity in SBPs. We show that a unique closed SBP conformation does not exist for transported substrates. Instead, SBPs sample a range of conformations that activate transport. Certain non-transported ligands leave the structure largely unaltered or trigger a conformation distinct from that of transported substrates. Intriguingly, in some cases, similar SBP conformations are formed by both transported and non-transported ligands. In this case, the inability for transport arises from slow opening of the SBP or the selectivity provided by the translocator. Our results reveal the complex interplay between ligand-SBP interactions, SBP conformational dynamics and substrate transport.

[1]  H. Nikaido,et al.  Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. S. Milella,et al.  Ligand Binding , 2020, Definitions.

[3]  Shimon Weiss,et al.  Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. , 2006, The journal of physical chemistry. B.

[4]  B. Poolman,et al.  ABC transporters: one, two or four extracytoplasmic substrate‐binding sites? , 2002, EMBO reports.

[5]  Gilad Haran,et al.  Single-molecule FRET methods to study the dynamics of proteins at work. , 2019, Current opinion in biomedical engineering.

[6]  J. Claverys,et al.  An rpsL Cassette, Janus, for Gene Replacement through Negative Selection in Streptococcus pneumoniae , 2001, Applied and Environmental Microbiology.

[7]  B. Poolman,et al.  Protein Linkers Provide Limits on the Domain Interactions in the ABC Importer GlnPQ and Determine the Rate of Transport. , 2018, Journal of molecular biology.

[8]  W. Wooster,et al.  Crystal structure of , 2005 .

[9]  B. Poolman,et al.  On the role of the two extracytoplasmic substrate‐binding domains in the ABC transporter OpuA , 2003, The EMBO journal.

[10]  M. Lawrence,et al.  A Molecular Mechanism for Bacterial Susceptibility to Zinc , 2011, PLoS pathogens.

[11]  L. Hor,et al.  Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex. , 1993, Journal of molecular biology.

[12]  D. Rees,et al.  In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B12 uptake. , 2005, Biochemistry.

[13]  J. C. Wolters,et al.  Ligand Binding and Crystal Structures of the Substrate-Binding Domain of the ABC Transporter OpuA , 2010, PloS one.

[14]  Nam Ki Lee,et al.  Alternating-laser excitation of single molecules. , 2005, Accounts of chemical research.

[15]  B. Poolman,et al.  Conformational dynamics in substrate-binding domains influences transport in the ABC importer GlnPQ , 2014, Nature Structural &Molecular Biology.

[16]  B. Poolman,et al.  Relative Rates of Amino Acid Import via the ABC Transporter GlnPQ Determine the Growth Performance of Lactococcus lactis , 2015, Journal of bacteriology.

[17]  Substrate Specificity and Ionic Regulation of GlnPQ from Lactococcus lactis , 2005, Journal of Biological Chemistry.

[18]  Alex Waibel,et al.  Readings in speech recognition , 1990 .

[19]  Francesco Panzeri,et al.  Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules , 2016, bioRxiv.

[20]  A. M. George ABC Transporters - 40 Years on , 2016, Springer International Publishing.

[21]  S. Mowbray,et al.  Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding proteins. , 1996, Journal of molecular biology.

[22]  B. Poolman,et al.  Energy Coupling Efficiency in the Type I ABC Transporter GlnPQ. , 2018, Journal of molecular biology.

[23]  G. Ames,et al.  Salmonella typhimurium histidine periplasmic permease mutations that allow transport in the absence of histidine-binding proteins , 1991, Journal of bacteriology.

[24]  B. Poolman,et al.  An updated structural classification of substrate‐binding proteins , 2016, FEBS letters.

[25]  D. F. Ogletree,et al.  Probing the interaction between single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[26]  F A Quiocho,et al.  Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. , 1997, Structure.

[27]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[28]  C. V. Vander Kooi Megaprimer method for mutagenesis of DNA. , 2013, Methods in Enzymology.

[29]  B. Poolman,et al.  Selenomethionine incorporation in proteins expressed in Lactococcus lactis , 2009, Protein science : a publication of the Protein Society.

[30]  Huan Bao,et al.  Discovery of an Auto-Regulation Mechanism for the Maltose ABC Transporter MalFGK2 , 2012, PloS one.

[31]  M. Lawrence,et al.  The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. , 1998, Structure.

[32]  Lutz Schmitt,et al.  A structural classification of substrate‐binding proteins , 2010, FEBS letters.

[33]  U. Magnusson,et al.  X-ray Structures of the Leucine-binding Protein Illustrate Conformational Changes and the Basis of Ligand Specificity* , 2004, Journal of Biological Chemistry.

[34]  B. Poolman,et al.  Membrane reconstitution of ABC transporters and assays of translocator function , 2008, Nature Protocols.

[35]  J. Bok,et al.  Fast and easy method for construction of plasmid vectors using modified quick-change mutagenesis. , 2012, Methods in molecular biology.

[36]  L. Kay,et al.  Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with beta-cyclodextrin. , 2000, Journal of molecular biology.

[37]  T. Ferenci The recognition of maltodextrins by Escherichia coli. , 1980, European journal of biochemistry.

[38]  E. Schneider,et al.  Structural basis for substrate specificity of an amino acid ABC transporter , 2015, Proceedings of the National Academy of Sciences.

[39]  G. Clore,et al.  Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR , 2007, Nature.

[40]  R. Couñago,et al.  Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae , 2015, Nature Communications.

[41]  John F. Hunt,et al.  Crystal Structures of the BtuF Periplasmic-binding Protein for Vitamin B12 Suggest a Functionally Important Reduction in Protein Mobility upon Ligand Binding* , 2003, The Journal of Biological Chemistry.

[42]  T. Thorgeirsson,et al.  Two modes of ligand binding in maltose-binding protein of Escherichia coli. Electron paramagnetic resonance study of ligand-induced global conformational changes by site-directed spin labeling. , 1997, The Journal of biological chemistry.

[43]  Hak-Sung Kim,et al.  Protein conformational dynamics dictate the binding affinity for a ligand , 2014, Nature Communications.

[44]  R. Tampé,et al.  The Binding Specificity of OppA Determines the Selectivity of the Oligopeptide ATP-binding Cassette Transporter* , 2004, Journal of Biological Chemistry.

[45]  S. Mowbray,et al.  The 1.9 A x-ray structure of a closed unliganded form of the periplasmic glucose/galactose receptor from Salmonella typhimurium. , 1994, The Journal of biological chemistry.

[46]  F A Quiocho,et al.  Refined 1.8-A structure reveals the mode of binding of beta-cyclodextrin to the maltodextrin binding protein. , 1993, Biochemistry.

[47]  E. Bremer,et al.  Crystal Structures of the Choline/Acetylcholine Substrate-binding Protein ChoX from Sinorhizobium meliloti in the Liganded and Unliganded-Closed States* , 2008, Journal of Biological Chemistry.

[48]  Xuhui Huang,et al.  Conformational Dynamics of apo-GlnBP Revealed by Experimental and Computational Analysis. , 2016, Angewandte Chemie.

[49]  Jue Chen,et al.  Crystal Structure of the Maltose Transporter in a Pretranslocation Intermediate State , 2011, Science.

[50]  R. Couñago,et al.  Imperfect coordination chemistry facilitates metal ion release in the Psa permease. , 2014, Nature chemical biology.

[51]  Importance of a Hydrophobic Pocket for Peptide Binding in Lactococcal OppA , 2011, Journal of bacteriology.

[52]  Hak-Sung Kim,et al.  A single-molecule dissection of ligand binding to a protein with intrinsic dynamics. , 2013, Nature chemical biology.

[53]  G. van den Bogaart,et al.  Probing receptor-translocator interactions in the oligopeptide ABC transporter by fluorescence correlation spectroscopy. , 2008, Biophysical journal.

[54]  Thorben Cordes,et al.  Conformational dynamics of the ABC transporter McjD seen by single‐molecule FRET , 2018, The EMBO journal.

[55]  A. D. Gould,et al.  Stimulation of the maltose transporter ATPase by unliganded maltose binding protein. , 2009, Biochemistry.

[56]  D. Rees,et al.  An Inward-Facing Conformation of a Putative Metal-Chelate-Type ABC Transporter , 2007, Science.

[57]  B. Mikami,et al.  Recognition of heteropolysaccharide alginate by periplasmic solute-binding proteins of a bacterial ABC transporter. , 2012, Biochemistry.

[58]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[59]  Watching conformational dynamics of ABC transporters with single-molecule tools. , 2015, Biochemical Society transactions.

[60]  G. Maglia,et al.  Current Blockades of Proteins inside Nanopores for Real-Time Metabolome Analysis , 2020, ACS nano.

[61]  Jue Chen,et al.  Structure, Function, and Evolution of Bacterial ATP-Binding Cassette Systems , 2008, Microbiology and Molecular Biology Reviews.

[62]  K. Locher,et al.  X-ray structure of the Yersinia pestis heme transporter HmuUV , 2012, Nature Structural &Molecular Biology.

[63]  F. Quiocho,et al.  Ligand-free and -bound structures of the binding protein (LivJ) of the Escherichia coli ABC leucine/isoleucine/valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity. , 2005, Biochemistry.

[64]  Shanshuang Chen,et al.  Structural basis for substrate specificity in the Escherichia coli maltose transport system , 2013, Proceedings of the National Academy of Sciences.

[65]  Igor V. Shevelev,et al.  The 3|[prime]||[ndash]|5|[prime]| exonucleases , 2002 .

[66]  K. Locher Mechanistic diversity in ATP-binding cassette (ABC) transporters , 2016, Nature Structural &Molecular Biology.

[67]  Douglas C. Rees,et al.  The E. coli BtuCD Structure: A Framework for ABC Transporter Architecture and Mechanism , 2002, Science.

[68]  T. Ferenci,et al.  Substrate specificity of the Escherichia coli maltodextrin transport system and its component proteins. , 1986, Biochimica et biophysica acta.

[69]  Christine Ziegler,et al.  Caging and Photoactivation in Single-Molecule Förster Resonance Energy Transfer Experiments , 2017, Biochemistry.

[70]  R. Couñago,et al.  AdcA and AdcAII employ distinct zinc acquisition mechanisms and contribute additively to zinc homeostasis in Streptococcus pneumoniae , 2014, Molecular microbiology.

[71]  Nam Ki Lee,et al.  Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Antonino Ingargiola,et al.  Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy transfer , 2018, Science.

[73]  Rebecca Mächtel,et al.  An integrated transport mechanism of the maltose ABC importer , 2019, Research in microbiology.

[74]  R. Aebersold,et al.  The quantitative and condition-dependent Escherichia coli proteome , 2015, Nature Biotechnology.

[75]  F. Quiocho,et al.  Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes , 1996, Molecular microbiology.

[76]  Florante A. Quiocho,et al.  Structural evidence for a dominant role of nonpolar interactions in the binding of a transport/chemosensory receptor to its highly polar ligands. , 2002, Biochemistry.

[77]  N. Ben-Tal,et al.  Substrate recognition and ATPase activity of the E. coli cysteine/cystine ABC transporter YecSC-FliY , 2020, The Journal of Biological Chemistry.

[78]  K. Locher,et al.  Structure of an ABC transporter in complex with its binding protein , 2007, Nature.

[79]  Chankyu Park,et al.  Conformational changes and ligand recognition of Escherichia coli D-xylose binding protein revealed. , 2010, Journal of molecular biology.

[80]  P. Phale,et al.  High Resolution Structures of Periplasmic Glucose-binding Protein of Pseudomonas putida CSV86 Reveal Structural Basis of Its Substrate Specificity* , 2016, The Journal of Biological Chemistry.

[81]  C. Higgins,et al.  ABC transporters: from microorganisms to man. , 1992, Annual review of cell biology.

[82]  M. Safro,et al.  Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase. , 2005, Structure.

[83]  B. Kobe,et al.  Structure and Metal Binding Properties of Chlamydia trachomatis YtgA , 2019, Journal of bacteriology.

[84]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[85]  Christian Eggeling,et al.  A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization , 2016, Nature Communications.

[86]  A. Ganesan,et al.  Two modes of ligand binding in maltose-binding protein of Escherichia coli. Functional significance in active transport. , 1997, The Journal of biological chemistry.