Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials

Materials with the olivine structure form an important class of rechargeable battery cathodes. Using first-principles methods, activation barriers to Li ion motion are calculated and an estimate for Li diffusion constants, in the absence of electrical conductivity constraints, is made. Materials with Fe, Co, Ni are considered. Li diffuses through one-dimensional channels with high energy barriers to cross between the channels. Without electrical conductivity limitations the intrinsic Li diffusivity is high. © 2003 The Electrochemical Society. All rights reserved.

[1]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[2]  K. Amine,et al.  OLIVINE LICOPO4 AS 4.8 V ELECTRODE MATERIAL FOR LITHIUM BATTERIES , 1999 .

[3]  R. Kutner Chemical diffusion in the lattice gas of non-interacting particles , 1981 .

[4]  Anton Van der Ven,et al.  Lithium Diffusion in Layered Li x CoO2 , 1999 .

[5]  G. Vineyard Frequency factors and isotope effects in solid state rate processes , 1957 .

[6]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[7]  D. Vaknin,et al.  Weakly coupled antiferromagnetic planes in single-crystal LiCoPO4 , 2002 .

[8]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[9]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[10]  T. Rojo,et al.  Weakly (x=0) and randomly (x=0.033) coupled Ising antiferromagnetic planes in (Li{sub 1{minus}3x}Fe{sub x})NiPO{sub 4} compounds , 1999 .

[11]  John O. Thomas,et al.  Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study , 2000 .

[12]  R. E. Newnham,et al.  Antiferromagnetism in LiFePO4 , 1967 .

[13]  Peter Y. Zavalij,et al.  Reactivity, stability and electrochemical behavior of lithium iron phosphates , 2002 .

[14]  K. Benkhouja,et al.  Crystallochemical and magnetic studies of LiMiM'PO (M, M' = Mn, Co, Ni; O ? x ? 1) , 1998 .

[15]  Guohua Li,et al.  LiMnPO4 as the Cathode for Lithium Batteries , 2002 .

[16]  N. Dudney,et al.  Lithium Diffusion in LixCoO2 (0.45 < x < 0.7) Intercalation Cathodes , 2001 .

[17]  Sai-Cheong Chung,et al.  Crystal Chemistry of the Olivine-Type Li ( Mn y Fe1 − y ) PO 4 and ( Mn y Fe1 − y ) PO 4 as Possible 4 V Cathode Materials for Lithium Batteries , 2001 .

[18]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[19]  A. Yamada,et al.  Phase Diagram of Li x ( Mn y Fe1 − y ) PO 4 ( 0 ⩽ x , y ⩽ 1 ) , 2001 .

[20]  H. Jónsson,et al.  Nudged elastic band method for finding minimum energy paths of transitions , 1998 .

[21]  A. Yamada,et al.  Reaction Mechanism of the Olivine-Type Li x ( Mn0.6Fe0.4 ) PO 4 ( 0 ⩽ x ⩽ 1 ) , 2001 .

[22]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .