Longitudinal Data with Covariate Measurement Error

Longitudinal studies are routinely conducted in various fields, including epidemiology, health research, and clinical trials. A variety of modeling and inference approaches are available for longitudinal data analysis. The validity of these methods relies on an important requirement that variables are precisely measured. This assumption is, however, often violated in practice.

[1]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[2]  Marie Davidian,et al.  An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. , 2002, Biostatistics.

[3]  David Couper,et al.  Modeling Partly Conditional Means with Longitudinal Data , 1997 .

[4]  Xiao-Hua Zhou,et al.  Marginal methods for clustered longitudinal binary data with incomplete covariates. , 2012, Journal of statistical planning and inference.

[5]  Hua Liang,et al.  Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates , 2009, 0903.0499.

[6]  A. Chesher The effect of measurement error , 1991 .

[7]  Hua Liang,et al.  Partially Linear Models with Missing Response Variables and Error-prone Covariates. , 2007, Biometrika.

[8]  Hua Liang,et al.  Generalized partially linear mixed-effects models incorporating mismeasured covariates , 2009, Annals of the Institute of Statistical Mathematics.

[9]  G. Yi,et al.  Joint modeling of survival data and mismeasured longitudinal data using the proportional odds model , 2014 .

[10]  M Palta,et al.  Latent variables, measurement error and methods for analysing longitudinal binary and ordinal data. , 1999, Statistics in medicine.

[11]  W. Stroup Generalized Linear Mixed Models: Modern Concepts, Methods and Applications , 2012 .

[12]  Lang Wu,et al.  Mixed Effects Models for Complex Data , 2019 .

[13]  L. Stefanski Unbiased estimation of a nonlinear function a normal mean with application to measurement err oorf models , 1989 .

[14]  David R. Cox,et al.  Nonlinear component of variance models , 1992 .

[15]  E Demidenko,et al.  Covariate measurement error and the estimation of random effect parameters in a mixed model for longitudinal data. , 1998, Statistics in medicine.

[16]  Joseph G Ibrahim,et al.  Maximum Likelihood Methods for Nonignorable Missing Responses and Covariates in Random Effects Models , 2003, Biometrics.

[17]  J. Robins,et al.  Estimation of Regression Coefficients When Some Regressors are not Always Observed , 1994 .

[18]  Raymond J. Carroll,et al.  Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process , 1988 .

[19]  Lang Wu,et al.  Simultaneous inference and bias analysis for longitudinal data with covariate measurement error and missing responses. , 2011, Biometrics.

[20]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[21]  J. Shao,et al.  GMM in linear regression for longitudinal data with multiple covariates measured with error , 2010 .

[22]  B. Lindsay,et al.  Improving generalised estimating equations using quadratic inference functions , 2000 .

[23]  Joseph G Ibrahim,et al.  Joint modeling of survival and longitudinal non‐survival data: current methods and issues. Report of the DIA Bayesian joint modeling working group , 2015, Statistics in medicine.

[24]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[25]  Margaret S. Pepe,et al.  Expected estimating equations to accommodate covariate measurement error , 2000 .

[26]  Marie Davidian,et al.  A note on covariate measurement error in nonlinear mixed effects models , 1996 .

[27]  C. Klaassen,et al.  Discussion to "Inference for semiparametric models: some questions and an answer" by Peter J. Bickel and Jaimyoung Kwon , 2001 .

[28]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[29]  A. Rotnitzky,et al.  Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis by DANIELS, M. J. and HOGAN, J. W , 2009 .

[30]  Grace Y Yi,et al.  A simulation-based marginal method for longitudinal data with dropout and mismeasured covariates. , 2008, Biostatistics.

[31]  Grace Y. Yi,et al.  A pairwise likelihood approach for longitudinal data with missing observations in both response and covariates , 2013, Comput. Stat. Data Anal..

[32]  R. Carroll,et al.  Nonparametric Function Estimation for Clustered Data When the Predictor is Measured without/with Error , 2000 .

[33]  R. Little Pattern-Mixture Models for Multivariate Incomplete Data , 1993 .

[34]  Grace Y. Yi,et al.  Missing Data Mechanisms for Analysing Longitudinal Data with Incomplete Observations in Both Responses and Covariates , 2016 .

[35]  Sophia Rabe-Hesketh,et al.  Generalized latent variable models: multilevel, longitudinal, and structural equation models , 2004 .

[36]  C Y Wang,et al.  Regression Analysis When Covariates Are Regression Parameters of a Random Effects Model for Observed Longitudinal Measurements , 2000, Biometrics.

[37]  Russell D. Wolfinger,et al.  Laplace's approximation for nonlinear mixed models. , 1993 .

[38]  Grace Y. Yi,et al.  A functional generalized method of moments approach for longitudinal studies with missing responses and covariate measurement error , 2012, Biometrika.

[39]  Eugene Demidenko,et al.  Estimation in longitudinal random effects models with measurement error , 2000 .

[40]  Roderick J. A. Little,et al.  Statistical Analysis with Missing Data: Little/Statistical Analysis with Missing Data , 2002 .

[41]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[42]  Russell D. Wolfinger,et al.  Two Taylor-series approximation methods for nonlinear mixed models , 1997 .

[43]  Richard J. Cook,et al.  A robust pairwise likelihood method for incomplete longitudinal binary data arising in clusters , 2011 .

[44]  M. Wulfsohn,et al.  Modeling the Relationship of Survival to Longitudinal Data Measured with Error. Applications to Survival and CD4 Counts in Patients with AIDS , 1995 .

[45]  G. Yi,et al.  Estimating functions for evaluating treatment effects in cluster‐randomized longitudinal studies in the presence of drop‐out and non‐compliance , 2010 .

[46]  M Davidian,et al.  Correcting for measurement error in individual-level covariates in nonlinear mixed effects models. , 2000, Biometrics.

[47]  F. Hsieh,et al.  Joint modelling of accelerated failure time and longitudinal data , 2005 .

[48]  Roderick J. A. Little,et al.  Modeling the Drop-Out Mechanism in Repeated-Measures Studies , 1995 .

[49]  M. Wulfsohn,et al.  A joint model for survival and longitudinal data measured with error. , 1997, Biometrics.

[50]  Marie Davidian,et al.  A Two-Step Approach to Measurement Error in Time-Dependent Covariates in Nonlinear Mixed-Effects Models, with Application to IGF-I Pharmacokinetics , 1997 .

[51]  F. Vandenhende,et al.  ON THE JOINT ANALYSIS OF LONGITUDINAL RESPONSES AND EARLY DISCONTINUATION IN RANDOMIZED TRIALS , 2002, Journal of biopharmaceutical statistics.

[52]  Xihong Lin,et al.  Semiparametric Modeling of Longitudinal Measurements and Time‐to‐Event Data–A Two‐Stage Regression Calibration Approach , 2008, Biometrics.

[53]  Bruce G. Lindsay,et al.  ISSUES AND STRATEGIES IN THE SELECTION OF COMPOSITE LIKELIHOODS , 2011 .

[54]  J. Hardin,et al.  Generalized Estimating Equations , 2002 .

[55]  Raymond J. Carroll,et al.  Conditional scores and optimal scores for generalized linear measurement-error models , 1987 .

[56]  J. Robins,et al.  Analysis of semiparametric regression models for repeated outcomes in the presence of missing data , 1995 .

[57]  Yangxin Huang,et al.  A Bayesian mixture of semiparametric mixed‐effects joint models for skewed‐longitudinal and time‐to‐event data , 2015, Statistics in medicine.

[58]  Wei Liu,et al.  Analysis of Longitudinal and Survival Data: Joint Modeling, Inference Methods, and Issues , 2012 .

[59]  M. Kenward,et al.  A comparison of multiple imputation and doubly robust estimation for analyses with missing data , 2006 .

[60]  G. Yi,et al.  A Pairwise Likelihood Method For Correlated Binary Data With/withoutMissing Observations Under Generalized Partially Linear Single-indexModels , 2011 .

[61]  Richard J. Cook,et al.  Marginal Methods for Incomplete Longitudinal Data Arising in Clusters , 2002 .

[62]  Grace Y Yi,et al.  Estimation methods for marginal and association parameters for longitudinal binary data with nonignorable missing observations , 2013, Statistics in medicine.

[63]  Wei Liu,et al.  Simultaneous Inference for Semiparametric Nonlinear Mixed‐Effects Models with Covariate Measurement Errors and Missing Responses , 2007, Biometrics.

[64]  L. Skovgaard NONLINEAR MODELS FOR REPEATED MEASUREMENT DATA. , 1996 .

[65]  Lang Li,et al.  A Population Pharmacokinetic Model with Time‐Dependent Covariates Measured with Errors , 2004, Biometrics.

[66]  Expected Estimating Equations for Missing Data, Measurement Error, and Misclassification, with Application to Longitudinal Nonignorable Missing Data , 2008, Biometrics.

[67]  M. Kenward,et al.  Informative Drop‐Out in Longitudinal Data Analysis , 1994 .

[68]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[69]  Michelle Shardell,et al.  Weighted estimating equations for longitudinal studies with death and non‐monotone missing time‐dependent covariates and outcomes , 2008, Statistics in medicine.

[70]  M. Pepe,et al.  A cautionary note on inference for marginal regression models with longitudinal data and general correlated response data , 1994 .

[71]  Lang Wu,et al.  A Joint Model for Nonlinear Mixed-Effects Models With Censoring and Covariates Measured With Error, With Application to AIDS Studies , 2002 .

[72]  S. Zeger,et al.  Multivariate Regression Analyses for Categorical Data , 1992 .

[73]  Liang Li,et al.  A Semiparametric Joint Model for Longitudinal and Survival Data with Application to Hemodialysis Study , 2009, Biometrics.

[74]  Jane-Ling Wang,et al.  Modeling Longitudinal Data with Nonparametric Multiplicative Random Effects Jointly with Survival Data , 2008, Biometrics.

[75]  Daniel O. Scharfstein,et al.  Analysis of longitudinal data with irregular, outcome‐dependent follow‐up , 2004 .

[76]  Martin Crowder,et al.  On the use of a working correlation matrix in using generalised linear models for repeated measures , 1995 .

[77]  Anastasios A. Tsiatis,et al.  A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error , 2001 .

[78]  Richard J. Cook,et al.  Weighted Generalized Estimating Functions for Longitudinal Response and Covariate Data That Are Missing at Random , 2010 .

[79]  Dylan S. Small,et al.  Marginal regression analysis of longitudinal data with time‐dependent covariates: a generalized method‐of‐moments approach , 2007 .

[80]  Bradley Efron,et al.  Missing Data, Imputation, and the Bootstrap , 1994 .

[81]  James V. Zidek,et al.  Including structural measurement errors in the nonlinear regression analysis of clustered data , 1998 .

[82]  Assessing the validity of weighted generalized estimating equations , 2011 .

[83]  Wenqing He,et al.  Median Regression Models for Longitudinal Data with Dropouts , 2009, Biometrics.

[84]  Harry Joe,et al.  Composite Likelihood Methods , 2012 .

[85]  J. Neuhaus,et al.  Analysis of Clustered and Longitudinal Binary Data Subject to Response Misclassification , 2002, Biometrics.

[86]  Raymond J. Carroll,et al.  Bias Analysis and SIMEX Approach in Generalized Linear Mixed Measurement Error Models , 1998 .

[87]  G. Molenberghs,et al.  Models for Discrete Longitudinal Data , 2005 .

[88]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[89]  Jiming Jiang Linear and Generalized Linear Mixed Models and Their Applications , 2007 .

[90]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .