Gain function approximation in the feedback particle filter

This paper is concerned with numerical algorithms for gain function approximation in the feedback particle filter. The exact gain function is the solution of a Poisson equation involving a probability-weighted Laplacian. The problem is to approximate this solution using only particles sampled from the probability distribution. Two algorithms are presented: a Galerkin algorithm and a kernel-based algorithm. Both the algorithms are adapted to the samples and do not require approximation of the probability distribution as an intermediate step. The paper contains a preliminary error analysis for the algorithms as well as some comparative numerical results for a non-Gaussian distribution. These algorithms are also applied and illustrated for a simple nonlinear filtering example.

[1]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[2]  Deovrat Kakde,et al.  The Mean and Median Criteria for Kernel Bandwidth Selection for Support Vector Data Description , 2017, 2017 IEEE International Conference on Data Mining Workshops (ICDMW).

[3]  R. Taylor,et al.  The Numerical Treatment of Integral Equations , 1978 .

[4]  Jie Xiong,et al.  An Introduction to Stochastic Filtering Theory , 2008 .

[5]  Jan Mandel,et al.  Convergence of the Square Root Ensemble Kalman Filter in the Large Ensemble Limit , 2014, SIAM/ASA J. Uncertain. Quantification.

[6]  V. Koltchinskii,et al.  Random matrix approximation of spectra of integral operators , 2000 .

[7]  Dan Crisan,et al.  A Kusuoka–Lyons–Victoir particle filter , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  AudibertJean-Yves,et al.  Graph Laplacians and their Convergence on Random Neighborhood Graphs , 2007 .

[9]  Pawel M. Stano,et al.  Nonlinear State and Parameter Estimation for Hopper Dredgers , 2013 .

[10]  S. Meyn,et al.  Large Deviations Asymptotics and the Spectral Theory of Multiplicatively Regular Markov Processes , 2005, math/0509310.

[11]  A. Sznitman Topics in propagation of chaos , 1991 .

[12]  Tao Yang,et al.  The continuous-discrete time feedback particle filter , 2014, 2014 American Control Conference.

[13]  D. Bakry,et al.  A simple proof of the Poincaré inequality for a large class of probability measures , 2008 .

[14]  Sebastian Reich,et al.  A McKean optimal transportation perspective on Feynman-Kac formulae with application to data assimilation , 2013, 1311.6300.

[15]  Sebastian Reich,et al.  An ensemble Kalman-Bucy filter for continuous data assimilation , 2012 .

[16]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[17]  Eugenia Kalnay,et al.  Atmospheric Modeling, Data Assimilation and Predictability , 2002 .

[18]  Prashant G. Mehta,et al.  A comparative study of nonlinear filtering techniques , 2013, Proceedings of the 16th International Conference on Information Fusion.

[19]  Amirhossein Taghvaei,et al.  Error estimates for the kernel gain function approximation in the feedback particle filter , 2016, 2017 American Control Conference (ACC).

[20]  Fred Daum,et al.  Exact particle flow for nonlinear filters , 2010, Defense + Commercial Sensing.

[21]  Robert Babuska,et al.  Estimation of the soil-dependent time-varying parameters of the hopper sedimentation model: The FPF versus the BPF , 2014 .

[22]  D. Crisan,et al.  Fundamentals of Stochastic Filtering , 2008 .

[23]  A. Doucet,et al.  Gibbs flow for approximate transport with applications to Bayesian computation , 2015, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[24]  Ulrike von Luxburg,et al.  From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.

[25]  P. Anselone,et al.  Collectively Compact Operator Approximation Theory and Applications to Integral Equations , 1971 .

[26]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[27]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[28]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[29]  D. Stroock An Introduction to Markov Processes , 2004 .

[30]  Youssef M. Marzouk,et al.  Bayesian inference with optimal maps , 2011, J. Comput. Phys..

[31]  Ning Liu,et al.  Inverse Theory for Petroleum Reservoir Characterization and History Matching , 2008 .

[32]  Amirhossein Taghvaei,et al.  An optimal transport formulation of the linear feedback particle filter , 2015, 2016 American Control Conference (ACC).

[33]  Pierre Del Moral,et al.  On the Stability and the Uniform Propagation of Chaos of a Class of Extended Ensemble Kalman-Bucy Filters , 2016, SIAM J. Control. Optim..

[34]  J. Rosenthal,et al.  Geometric Ergodicity and Hybrid Markov Chains , 1997 .

[35]  K. Atkinson,et al.  A survey of numerical methods for the solution of Fredholm integral equations of the second kind , 1977 .

[36]  Dan Crisan,et al.  Numerical solutions for a class of SPDEs over bounded domains , 2007 .

[37]  A. Stuart,et al.  Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time , 2013, 1310.3167.

[38]  Karl Berntorp,et al.  Data-driven gain computation in the feedback particle filter , 2016, 2016 American Control Conference (ACC).

[39]  Tryphon T. Georgiou,et al.  Optimal Steering of a Linear Stochastic System to a Final Probability Distribution—Part III , 2014, IEEE Transactions on Automatic Control.

[40]  Amirhossein Taghvaei,et al.  Kalman Filter and its Modern Extensions for the Continuous-time Nonlinear Filtering Problem , 2017, ArXiv.

[41]  Wilhelm Stannat,et al.  Long-Time Stability and Accuracy of the Ensemble Kalman-Bucy Filter for Fully Observed Processes and Small Measurement Noise , 2016, SIAM J. Appl. Dyn. Syst..

[42]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[43]  Sean P. Meyn,et al.  Feedback Particle Filter , 2013, IEEE Transactions on Automatic Control.

[44]  F. Gland,et al.  Large sample asymptotics for the ensemble Kalman filter , 2009 .

[45]  Pierre Del Moral,et al.  Feynman-Kac formulae , 2004 .

[46]  Benjamin Naumann,et al.  Applications Of Functional Analysis And Operator Theory , 2016 .

[47]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[48]  A. Singer From graph to manifold Laplacian: The convergence rate , 2006 .

[49]  Pierre Del Moral,et al.  On the stability and the uniform propagation of chaos properties of Ensemble Kalman-Bucy filters , 2016, 1605.09329.

[50]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[51]  Ling Huang,et al.  An Analysis of the Convergence of Graph Laplacians , 2010, ICML.

[52]  Mikhail Belkin,et al.  Consistency of spectral clustering , 2008, 0804.0678.

[53]  Ulrike von Luxburg,et al.  Graph Laplacians and their Convergence on Random Neighborhood Graphs , 2006, J. Mach. Learn. Res..

[54]  Sean P. Meyn,et al.  Feedback Particle Filter Design Using a Differential-Loss Reproducing Kernel Hilbert Space , 2018, 2018 Annual American Control Conference (ACC).

[55]  Sean P. Meyn Control Techniques for Complex Networks: Workload , 2007 .

[56]  Sean P. Meyn,et al.  Learning techniques for feedback particle filter design , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[57]  Sean P. Meyn,et al.  A mean-field control-oriented approach to particle filtering , 2011, Proceedings of the 2011 American Control Conference.

[58]  V. C. L. Hutson,et al.  Applications of Functional Analysis and Operator Theory , 1980 .

[59]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[60]  Sean P. Meyn,et al.  A Liapounov bound for solutions of the Poisson equation , 1996 .

[61]  Sean P. Meyn,et al.  Feedback particle filter with mean-field coupling , 2011, IEEE Conference on Decision and Control and European Control Conference.

[62]  S. Reich A dynamical systems framework for intermittent data assimilation , 2011 .

[63]  Rui Hirokawa,et al.  Suboptimal Gain Functions of Feedback Particle Filter Derived from Continuation Method , 2016 .

[64]  C. Villani Topics in Optimal Transportation , 2003 .

[65]  Sean P. Meyn,et al.  Poisson's equation in nonlinear filtering , 2014, 53rd IEEE Conference on Decision and Control.

[66]  Colin J. Cotter,et al.  Probabilistic Forecasting and Bayesian Data Assimilation , 2015 .

[67]  Karl Berntorp,et al.  Feedback particle filter: Application and evaluation , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[68]  Fred Daum,et al.  Generalized Gromov method for stochastic particle flow filters , 2017, Defense + Security.

[69]  Sean P. Meyn,et al.  Multivariable feedback particle filter , 2016, Autom..

[70]  Mikhail Belkin,et al.  Problems of learning on manifolds , 2003 .

[71]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[72]  D. Crisan,et al.  Approximate McKean–Vlasov representations for a class of SPDEs , 2005, math/0510668.

[73]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[74]  A. Budhiraja,et al.  A survey of numerical methods for nonlinear filtering problems , 2007 .

[75]  Mikhail Belkin,et al.  Convergence of Laplacian Eigenmaps , 2006, NIPS.

[76]  Karl Berntorp,et al.  Comparison of Gain Function Approximation Methods in the Feedback Particle Filter , 2018, 2018 21st International Conference on Information Fusion (FUSION).