Ample Group Action on AS-regular Algebras and Noncommutative Graded Isolated Singularities

In this paper, we introduce a notion of ampleness of a group action $G$ on a right noetherian graded algebra $A$, and show that it is strongly related to the notion of $A^G$ to be a graded isolated singularity introduced by the second author of this paper. Moreover, if $S$ is a noetherian AS-regular algebra and $G$ is a finite ample group acting on $S$, then we will show that ${\mathcal D}^b(\operatorname{tails} S^G)\cong {\cal D}^b(\operatorname{mod} \nabla S*G)$ where $\nabla S$ is the Beilinson algebra of $S$. We will also explicitly calculate a quiver $Q_{S, G}$ such that ${\mathcal D}^b(\operatorname{tails} S^G)\cong {\mathcal D}^b(\operatorname{mod} kQ_{S, G})$ when $S$ is of dimension 2.

[1]  Manuel Reyes,et al.  Skew Calabi–Yau algebras and homological identities , 2013, 1302.0437.

[2]  Izuru Mori,et al.  McKay‐type correspondence for AS‐regular algebras , 2013, J. Lond. Math. Soc..

[3]  Kenta Ueyama Graded maximal Cohen–Macaulay modules over noncommutative graded Gorenstein isolated singularities , 2013 .

[4]  James J. Zhang,et al.  Quantum binary polyhedral groups and their actions on quantum planes , 2013, 1303.7203.

[5]  I. Reiten,et al.  Stable categories of Cohen-Macaulay modules and cluster categories: Dedicated to Ragnar-Olaf Buchweitz on the occasion of his sixtieth birthday , 2011, 1104.3658.

[6]  I. Mori,et al.  The structure of AS-Gorenstein algebras , 2011 .

[7]  Osamu Iyama,et al.  Tilting and cluster tilting for quotient singularities , 2010, 1012.5954.

[8]  Y. Yoshino,et al.  Mutation in triangulated categories and rigid Cohen–Macaulay modules , 2006, math/0607736.

[9]  K. Ueda Triangulated categories of Gorenstein cyclic quotient singularities , 2007, 0710.1911.

[10]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[11]  I. Reiten,et al.  Grothendieck Groups and Tilting Objects , 2000, math/0005100.

[12]  James J. Zhang,et al.  Gourmet's Guide to Gorensteinness , 2000 .

[13]  James J. Zhang,et al.  Gorensteinness of Invariant Subrings of Quantum Algebras , 1998, math/9810152.

[14]  H. Lenzing Hereditary noetherian categories with a tilting complex , 1997 .

[15]  James J. Zhang,et al.  Growth of graded noetherian rings , 1997 .

[16]  James J. Zhang,et al.  Noncommutative Projective Schemes , 1994 .

[17]  A. Duncan COHEN‐MACAULAY MODULES OVER COHEN‐MACAULAY RINGS , 1992 .

[18]  A. Schofield TRIANGULATED CATEGORIES IN THE REPRESENTATION THEORY OF FINITE DIMENSIONAL ALGEBRAS (London Mathematical Society Lecture Note Series 119) , 1990 .

[19]  Y. Yoshino,et al.  Cohen-Macaulay modules over Cohen-Macaulay rings , 1990 .

[20]  Dieter Happel,et al.  Triangulated categories in the representation theory of finite dimensional algebras , 1988 .

[21]  I. Reiten,et al.  Skew group algebras in the representation theory of artin algebras , 1985 .

[22]  S. Montgomery Fixed Rings of Finite Automorphism Groups of Associative Rings , 1980 .