Retrieving Lévy Processes from Option Prices: Regularization of an Ill-posed Inverse Problem
暂无分享,去创建一个
[1] MINIMAL DISTANCE MARTINGALE MEASURES AND OPTIMAL PORTFOLIOS CONSISTENT WITH OBSERVED MARKET PRICES , 2002 .
[2] Yves Achdou. An Inverse Problem for a Parabolic Variational Inequality Arising in Volatility Calibration with American Options , 2005, SIAM J. Control. Optim..
[3] L. Nguyen. Calibration de modèles financiers par minimisation d'entropie relative et modèles avec sauts , 2003 .
[4] David S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .
[5] Robert Buff,et al. WEIGHTED MONTE CARLO: A NEW TECHNIQUE FOR CALIBRATING ASSET-PRICING MODELS , 2001 .
[6] J. Harrison,et al. Martingales and stochastic integrals in the theory of continuous trading , 1981 .
[7] R. Schilling. Financial Modelling with Jump Processes , 2005 .
[8] Stéphane Crépey. Calibration of the local volatility in a trinomial tree using Tikhonov regularization , 2003 .
[9] Dominick Samperi,et al. Calibrating a Diffusion Pricing Model with Uncertain Volatility: Regularization and Stability , 2002 .
[10] Yoshio Miyahara,et al. The minimal entropy martingale measures for geometric Lévy processes , 2003, Finance Stochastics.
[11] Stanley Osher,et al. A technique for calibrating derivative security pricing models: numerical solution of an inverse problem , 1997 .
[12] T. Chan. Pricing contingent claims on stocks driven by Lévy processes , 1999 .
[13] M. Stutzer. A Simple Nonparametric Approach to Derivative Security Valuation , 1996 .
[14] Nicole El Karoui,et al. Pricing Via Utility Maximization and Entropy , 2000 .
[15] P. Tankov. Lévy Processes in Finance: Inverse Problems and Dependence Modelling , 2004 .
[16] Jan Kallsen,et al. Optimal portfolios for logarithmic utility , 2000 .
[17] Marco Avellaneda. The minimum-entropy algorithm and related methods for calibrating asset-pricing models , 1998 .
[18] Rama Cont. Model Uncertainty and its Impact on the Pricing of Derivative Instruments , 2004 .
[19] Rama Cont,et al. A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..
[20] Bruno Dupire. Pricing with a Smile , 1994 .
[21] M. Rubinstein.. Implied Binomial Trees , 1994 .
[22] R. Rockafellar. Integrals which are convex functionals. II , 1968 .
[23] M. Frittelli. The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .
[24] Endre Süli,et al. Computation of Deterministic Volatility Surfaces , 1998 .
[25] Heinz W. Engl,et al. Convergence rates for maximum entropy regularization , 1993 .
[26] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[27] I. Csiszár. $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .
[28] David S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .
[29] Marco Avellaneda,et al. Calibrating Volatility Surfaces Via Relative-Entropy Minimization , 1996 .
[30] S. Ben Hamida,et al. Recovering Volatility from Option Prices by Evolutionary Optimization , 2004 .
[31] P. Carr,et al. Option valuation using the fast Fourier transform , 1999 .
[32] R. Cont,et al. Non-parametric calibration of jump–diffusion option pricing models , 2004 .