Retrieving Lévy Processes from Option Prices: Regularization of an Ill-posed Inverse Problem

We propose a stable nonparametric method for constructing an option pricing model of exponential Levy type, consistent with a given data set of option prices. After demonstrating the ill-posedness of the usual and least squares version of this inverse problem, we suggest to regularize the calibration problem by reformulating it as the problem of finding an exponential Levy model that minimizes the sum of the pricing error and the relative entropy with respect to a prior exponential Levy model. We prove the existence of solutions for the regularized problem and show that it yields solutions which are continuous with respect to the data, stable with respect to the choice of prior, and which converge to the minimum entropy least squares solution of the initial problem when the noise level in the data vanishes.

[1]  MINIMAL DISTANCE MARTINGALE MEASURES AND OPTIMAL PORTFOLIOS CONSISTENT WITH OBSERVED MARKET PRICES , 2002 .

[2]  Yves Achdou An Inverse Problem for a Parabolic Variational Inequality Arising in Volatility Calibration with American Options , 2005, SIAM J. Control. Optim..

[3]  L. Nguyen Calibration de modèles financiers par minimisation d'entropie relative et modèles avec sauts , 2003 .

[4]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[5]  Robert Buff,et al.  WEIGHTED MONTE CARLO: A NEW TECHNIQUE FOR CALIBRATING ASSET-PRICING MODELS , 2001 .

[6]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[7]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[8]  Stéphane Crépey Calibration of the local volatility in a trinomial tree using Tikhonov regularization , 2003 .

[9]  Dominick Samperi,et al.  Calibrating a Diffusion Pricing Model with Uncertain Volatility: Regularization and Stability , 2002 .

[10]  Yoshio Miyahara,et al.  The minimal entropy martingale measures for geometric Lévy processes , 2003, Finance Stochastics.

[11]  Stanley Osher,et al.  A technique for calibrating derivative security pricing models: numerical solution of an inverse problem , 1997 .

[12]  T. Chan Pricing contingent claims on stocks driven by Lévy processes , 1999 .

[13]  M. Stutzer A Simple Nonparametric Approach to Derivative Security Valuation , 1996 .

[14]  Nicole El Karoui,et al.  Pricing Via Utility Maximization and Entropy , 2000 .

[15]  P. Tankov Lévy Processes in Finance: Inverse Problems and Dependence Modelling , 2004 .

[16]  Jan Kallsen,et al.  Optimal portfolios for logarithmic utility , 2000 .

[17]  Marco Avellaneda The minimum-entropy algorithm and related methods for calibrating asset-pricing models , 1998 .

[18]  Rama Cont Model Uncertainty and its Impact on the Pricing of Derivative Instruments , 2004 .

[19]  Rama Cont,et al.  A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..

[20]  Bruno Dupire Pricing with a Smile , 1994 .

[21]  M. Rubinstein. Implied Binomial Trees , 1994 .

[22]  R. Rockafellar Integrals which are convex functionals. II , 1968 .

[23]  M. Frittelli The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets , 2000 .

[24]  Endre Süli,et al.  Computation of Deterministic Volatility Surfaces , 1998 .

[25]  Heinz W. Engl,et al.  Convergence rates for maximum entropy regularization , 1993 .

[26]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[27]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[28]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options , 1998 .

[29]  Marco Avellaneda,et al.  Calibrating Volatility Surfaces Via Relative-Entropy Minimization , 1996 .

[30]  S. Ben Hamida,et al.  Recovering Volatility from Option Prices by Evolutionary Optimization , 2004 .

[31]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[32]  R. Cont,et al.  Non-parametric calibration of jump–diffusion option pricing models , 2004 .