An Algorithmic Characterization of P-matricity II: Adjustments, Refinements, and Validation

The paper "An algorithmic characterization of P-matricity " (SIAM Journal on Matrix Analysis and Applications, 34:3 (2013) 904–916, by the same authors as here) implicitly assumes that the iterates generated by the Newton-min algorithm for solving a linear complementarity problem of dimension n, which reads 0 ⩽ x ⊥ (M x + q) ⩾ 0, are uniquely determined by some index subsets of [[1, n]]. Even if this is satisfied for a subset of vectors q that is dense in R^n , this assumption is improper, in particular in the statements where the vector q is not subject to restrictions. The goal of the present contribution is to show that, despite this blunder, the main result of that paper is preserved. This one claims that a nondegenerate matrix M is a P-matrix if and only if the Newton-min algorithm does not cycle between two distinct points, whatever is q. The proof is hardly more complex, requiring only some additional refinements.

[1]  Christian Kanzow,et al.  Inexact semismooth Newton methods for large-scale complementarity problems , 2004, Optim. Methods Softw..

[2]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[3]  Andreas Fischer,et al.  On finite termination of an iterative method for linear complementarity problems , 1996, Math. Program..

[4]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[5]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[6]  K. Kunisch,et al.  Primal-Dual Strategy for Constrained Optimal Control Problems , 1999 .

[7]  R. Chandrasekaran,et al.  A Special Case of the Complementary Pivot Problem , 1969 .

[8]  M. Anthony,et al.  Advanced linear algebra , 2006 .

[9]  H. Samelson,et al.  A partition theorem for Euclidean $n$-space , 1958 .

[10]  M.,et al.  A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton-min algorithm for solving the linear complementarity problem , 2018 .

[11]  Franz Rendl,et al.  An Infeasible Active Set Method with Combinatorial Line Search for Convex Quadratic Problems with Bound Constraints ∗ , 2017 .

[12]  Jérôme Jaffré,et al.  Gas phase appearance and disappearance as a problem with complementarity constraints , 2011, Math. Comput. Simul..

[13]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[14]  NocedalJorge,et al.  A family of second-order methods for convex $$\ell _1$$ℓ1-regularized optimization , 2016 .

[15]  A.,et al.  How the augmented Lagrangian algorithm can deal with an infeasible convex quadratic optimization problem , 2010 .

[16]  邵文革,et al.  Gilbert综合征二例 , 2009 .

[17]  Karl Kunisch,et al.  A Comparison of a Moreau-Yosida-Based Active Set Strategy and Interior Point Methods for Constrained Optimal Control Problems , 2000, SIAM J. Optim..

[18]  M. Kojima,et al.  EXTENSION OF NEWTON AND QUASI-NEWTON METHODS TO SYSTEMS OF PC^1 EQUATIONS , 1986 .

[19]  Franz Rendl,et al.  A Feasible Active Set Method for Strictly Convex Quadratic Problems with Simple Bounds , 2015, SIAM J. Optim..

[20]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[21]  Jean Charles Gilbert,et al.  Global linear convergence of an augmented Lagrangian algorithm for solving convex quadratic optimization problems , 2002 .

[22]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[23]  Michael C. Ferris,et al.  Complementarity and variational problems : state of the art , 1997 .

[24]  Ibtihel Ben Gharbia,et al.  An Algorithmic Characterization of P-Matricity , 2013, SIAM J. Matrix Anal. Appl..

[25]  J. F. Bonnans Optimisation numérique : aspects théoriques et pratiques , 1997 .

[26]  Franz Rendl,et al.  An Infeasible Active Set Method for Quadratic Problems with Simple Bounds , 2003, SIAM J. Optim..

[27]  Ibtihel Ben Gharbia,et al.  Nonconvergence of the plain Newton-min algorithm for linear complementarity problems with a P-matrix , 2012, Math. Program..

[28]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[29]  Joaquim Júdice,et al.  A recursive semi-smooth Newton method for linear complementarity problems∗ , 2016 .

[30]  Daniel P. Robinson,et al.  A globally convergent primal-dual active-set framework for large-scale convex quadratic optimization , 2015, Comput. Optim. Appl..