Modeling and probabilistic design optimization of a nanofiber-enhanced composite cylinder for buckling

Abstract Micromechanical approaches are used in mathematical modeling of randomly distributed carbon nanofibers (CNFs) in a thermoset polymer material. Both CNF waviness and CNF-matrix interphase properties are included in the model. The interphase mechanical properties are considered to vary in a manner similar to functionally graded materials. The effects of stochastic uncertainties on the overall properties of the composite material are represented using the probability theory. The uncertainties are propagated in calculating the axial buckling load probability of a thin-walled composite cylinder, which is then optimized for minimum material volume. The probabilistic design optimization results are presented and discussed.

[1]  H. Toghiani,et al.  Classical micromechanics modeling of nanocomposites with carbon nanofibers and interphase , 2011 .

[2]  P. Poulin,et al.  Macroscopic fibers and ribbons of oriented carbon nanotubes. , 2000, Science.

[3]  W. T. Koiter,et al.  The Theory of Thin Elastic Shells , 1961 .

[4]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[5]  Masoud Rais-Rohani,et al.  Reliability Sensitivity Analysis and Design Optimization of Composite Structures Based on Response Surface Methodology , 2003 .

[6]  Tsu-Wei Chou,et al.  Nanocomposites in context , 2005 .

[7]  Masoud Rais-Rohani,et al.  A comparative study of metamodeling methods for multiobjective crashworthiness optimization , 2005 .

[8]  R. D. Bradshaw,et al.  Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor , 2003, Composites Science and Technology.

[9]  Vladimir I. Merkulov,et al.  Patterned growth of individual and multiple vertically aligned carbon nanofibers , 2000 .

[10]  R. Haftka,et al.  Reliability-based design optimization using probabilistic sufficiency factor , 2004 .

[11]  J. Reddy Analysis of functionally graded plates , 2000 .

[12]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[13]  Kyung K. Choi,et al.  A NEW STUDY ON RELIABILITY-BASED DESIGN OPTIMIZATION , 1999 .

[14]  T. Chou,et al.  Carbon nanotube/carbon fiber hybrid multiscale composites , 2002 .

[15]  Frank T. Fisher,et al.  Nanomechanics and the Viscoelastic Behavior of Carbon Nanotube-Reinforced Polymers , 2002 .

[16]  Isaac M. Daniel,et al.  Characterization and modeling of mechanical behavior of polymer/clay nanocomposites , 2003 .

[17]  M. Rais-Rohani,et al.  Ensemble of metamodels with optimized weight factors , 2008 .

[18]  Raphael T. Haftka,et al.  Reliability-based Design Optimization Using Probabilistic Safety Factor , 2003 .

[19]  M. Dresselhaus,et al.  Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers , 2003 .

[20]  Shaker A. Meguid,et al.  Multiscale modeling of the nonlinear response of nano-reinforced polymers , 2011 .

[21]  M. Cherkaoui,et al.  Fundamentals of Micromechanics of Solids , 2006 .

[22]  Xiaoping Du,et al.  Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design , 2004, DAC 2002.

[23]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[24]  A. Love A treatise on the mathematical theory of elasticity , 1892 .

[25]  Norman F. Knight,et al.  An assessment of shell theories for buckling ofcircular cylindrical laminated composite panels loaded inaxial compression , 1999 .

[26]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[27]  M. Rouhi Modeling and optimization of nano-enhanced polymer composite structures under uncertainty , 2011 .

[28]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  John Dalsgaard Sørensen,et al.  Reliability-Based Optimization in Structural Engineering , 1994 .

[30]  Mohamad S. Qatu,et al.  Recent research advances on the dynamic analysis of composite shells: 2000-2009 , 2010 .

[31]  J. Jancar Review of the role of the interphase in the control of composite performance on micro- and nano-length scales , 2008 .

[32]  E. Mäder,et al.  Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites , 2002 .

[33]  G. Gary Wang,et al.  Review of Metamodeling Techniques in Support of Engineering Design Optimization , 2007 .

[34]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[35]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[36]  Frank T. Fisher,et al.  Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties , 2003 .

[37]  T. Chou,et al.  On the elastic properties of carbon nanotube-based composites: modelling and characterization , 2003 .

[38]  M. Dresselhaus,et al.  Structural characterization of cup-stacked-type nanofibers with an entirely hollow core , 2002 .

[39]  Arzhang Angoshtari,et al.  THERMOELASTIC ANALYSIS OF THICK-WALLED FINITE-LENGTH CYLINDERS OF FUNCTIONALLY GRADED MATERIALS , 2005 .