An Evolutionary Algorithm for the Multi-objective Multiple Knapsack Problem
暂无分享,去创建一个
[1] Dirk Thierens,et al. The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..
[2] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[3] Marco Laumanns,et al. Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..
[4] Alexander Thomasian,et al. A GRASP algorithm for the multi-objective knapsack problem , 2004 .
[5] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[6] R. S. Laundy,et al. Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .
[7] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[8] Andrzej Jaszkiewicz,et al. On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study , 2004, Eur. J. Oper. Res..
[9] Jacques Teghem,et al. Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..
[10] Murat Köksalan,et al. A Favorable Weight-Based Evolutionary Algorithm for Multiple Criteria Problems , 2010, IEEE Transactions on Evolutionary Computation.
[11] David W. Corne,et al. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.
[12] José Rui Figueira,et al. Integrating partial optimization with scatter search for solving bi-criteria {0, 1}-knapsack problems , 2007, Eur. J. Oper. Res..
[13] Kalyanmoy Deb,et al. MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .
[14] Kalyanmoy Deb,et al. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.
[15] Daniel Vanderpooten,et al. Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..
[16] Maria João Alves,et al. MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem , 2007, Comput. Oper. Res..
[17] Goldberg,et al. Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.
[18] Murat Köksalan,et al. An Evolutionary Metaheuristic for Approximating Preference-Nondominated Solutions , 2007, INFORMS J. Comput..
[19] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[20] Zhiming Wu,et al. A Hybrid Fine-Tuned Multi-Objective Memetic Algorithm , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[21] José Rui Figueira,et al. A scatter search method for bi-criteria {0, 1}-knapsack problems , 2006, Eur. J. Oper. Res..
[22] José Rui Figueira,et al. Solving bicriteria 0-1 knapsack problems using a labeling algorithm , 2003, Comput. Oper. Res..