An Evolutionary Algorithm for the Multi-objective Multiple Knapsack Problem

In this study, we consider the multi-objective multiple knapsack problem (MMKP) and we adapt our favorable weight based evolutionary algorithm (FWEA) to approximate the efficient frontier of MMKP. The algorithm assigns fitness to solutions based on their relative strengths as well as their non-dominated frontiers. The relative strength is measured based on a weighted Tchebycheff distance from the ideal point where each solution chooses its own weights that minimize its distance from the ideal point. We carry out experiments on test data for MMKP given in the literature and compare the performance of the algorithm with several leading algorithms.

[1]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[2]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[3]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[4]  Alexander Thomasian,et al.  A GRASP algorithm for the multi-objective knapsack problem , 2004 .

[5]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[6]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  Andrzej Jaszkiewicz,et al.  On the computational efficiency of multiple objective metaheuristics. The knapsack problem case study , 2004, Eur. J. Oper. Res..

[9]  Jacques Teghem,et al.  Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..

[10]  Murat Köksalan,et al.  A Favorable Weight-Based Evolutionary Algorithm for Multiple Criteria Problems , 2010, IEEE Transactions on Evolutionary Computation.

[11]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[12]  José Rui Figueira,et al.  Integrating partial optimization with scatter search for solving bi-criteria {0, 1}-knapsack problems , 2007, Eur. J. Oper. Res..

[13]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[14]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[15]  Daniel Vanderpooten,et al.  Solving efficiently the 0-1 multi-objective knapsack problem , 2009, Comput. Oper. Res..

[16]  Maria João Alves,et al.  MOTGA: A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem , 2007, Comput. Oper. Res..

[17]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[18]  Murat Köksalan,et al.  An Evolutionary Metaheuristic for Approximating Preference-Nondominated Solutions , 2007, INFORMS J. Comput..

[19]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[20]  Zhiming Wu,et al.  A Hybrid Fine-Tuned Multi-Objective Memetic Algorithm , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[21]  José Rui Figueira,et al.  A scatter search method for bi-criteria {0, 1}-knapsack problems , 2006, Eur. J. Oper. Res..

[22]  José Rui Figueira,et al.  Solving bicriteria 0-1 knapsack problems using a labeling algorithm , 2003, Comput. Oper. Res..