On fuzzy modal logics S5(L)

The fuzzy variant S5(C) of the well-known modal logic S5 is studied, C being a recursively axiomatized fuzzy propositional logic extending the basic fuzzy logic BL. Three kinds of Kripke models are introduced and corresponding deductive systems are found.

[1]  Christian G. Fermüller,et al.  Combining Supervaluation and Degree Based Reasoning Under Vagueness , 2006, LPAR.

[2]  Melvin Fitting,et al.  Many-valued modal logics , 1991, Fundam. Informaticae.

[3]  Lluis Godo,et al.  A connection between Similarity Logic Programming and Gödel Modal Logic , 2005, EUSFLAT Conf..

[4]  Petr Hájek,et al.  On Modal Logics for Qualitative Possibility in a Fuzzy Setting , 1994, UAI.

[5]  Pascal Ostermann,et al.  Many-Valued Modal Propositional Calculi , 1988, Math. Log. Q..

[6]  Petr Hájek,et al.  A Comparative Fuzzy Modal Logic , 1993, FLAI.

[7]  Bruno Teheux,et al.  Completeness results for many-valued \Lukasiewicz modal systems and relational semantics , 2006 .

[8]  A. Mironov,et al.  Fuzzy Modal Logics , 2005 .

[9]  Petr Hájek On Vagueness, Truth Values and Fuzzy Logics , 2009, Stud Logica.

[10]  Petr Hájek,et al.  A non-arithmetical Gödel logic , 2005, Log. J. IGPL.

[11]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[12]  S. Shapiro Vagueness in Context , 2006 .

[13]  Christian G. Fermüller,et al.  Monadic Fragments of Gödel Logics: Decidability and Undecidability Results , 2007, LPAR.

[14]  Petr Hájek,et al.  On witnessed models in fuzzy logic , 2007, Math. Log. Q..

[15]  L. Godo,et al.  Exploring a Syntactic Notion of Modal Many-Valued Logics , 2008, SOCO 2008.

[16]  Petr Hájek,et al.  Fss 5598 Modc+(sc) Triangular Norm Based Predicate Fuzzy Logics , 2022 .

[17]  Petr Hájek Deductive Systems of Fuzzy Logic , 2011, Proof, Computation and Agency.

[18]  長田 怜 境界なき概念 (On vagueness) , 2005 .

[19]  Petr Hájek,et al.  On theories and models in fuzzy predicate logics , 2006, Journal of Symbolic Logic.

[20]  Petr Hájek On witnessed models in fuzzy logic II , 2007, Math. Log. Q..

[21]  Pere Garcia-Calvés,et al.  A modal account of similarity-based reasoning , 1997, Int. J. Approx. Reason..

[22]  Melvin Fitting,et al.  Many-valued modal logics II , 1992 .

[23]  Max J. Cresswell,et al.  A New Introduction to Modal Logic , 1998 .

[24]  Petr Hájek,et al.  A many-valued modal logic , 1996 .

[25]  Petr Hájek Computational complexity of t-norm based propositional fuzzy logics with rational truth constants , 2006, Fuzzy Sets Syst..

[26]  Lluis Godo,et al.  Modal Systems Based on Many-valued Logics , 2007, EUSFLAT Conf..

[27]  Petr Hájek,et al.  Monadic Fuzzy Predicate Logics , 2002, Stud Logica.

[28]  Osamu Morikawa Some Modal Logics Based on a Three-Valued Logic , 1989, Notre Dame J. Formal Log..

[29]  Pere Garcia-Calvés,et al.  Enriched Interval Bilattices and Partial Many-Valued Logics: an Approach to Deal with Graded Truth and Imprecision , 1994, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[30]  Wolfgang Slany,et al.  Fuzzy Logic in Artificial Intelligence , 1993, Lecture Notes in Computer Science.