A priori estimates for integro-differential operators with measurable kernels

The aim of this work is to develop a localization technique and to establish a regularity result for non-local integro-differential operators $${\fancyscript{L}}$$ of order $${\alpha\in (0,2)}$$ . Thereby we extend the De Giorgi–Nash–Moser theory to non-local integro-differential operators. The operators $${\fancyscript{L}}$$ under consideration generate strong Markov processes via the theory of Dirichlet forms. As is well known, regularity properties of the resolvents are important for many aspects of the corresponding stochastic process. Therefore, this work is related to probability theory and analysis, especially partial differential equations, at the same time.

[1]  R. Bass,et al.  Transition Probabilities for Symmetric Jump Processes , 2002 .

[2]  T. Komatsu Uniform estimates for fundamental solutions associated with non-local Dirichlet forms , 1995 .

[3]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[4]  R. Bass,et al.  Harnack inequalities for non-local operators of variable order , 2004 .

[5]  R. Bass,et al.  Hölder Continuity of Harmonic Functions with Respect to Operators of Variable Order , 2005 .

[6]  Jens Frehse,et al.  Existence of a Regular Periodic Solution to the Rothe Approximation of the Navier—Stokes Equation in Arbitrary Dimension , 2009 .

[7]  Luis Silvestre,et al.  Holder estimates for solutions of integra-differential equations like the fractional laplace , 2006 .

[8]  John L. Lewis,et al.  On Morrey-Besov inequalities , 1982 .

[9]  A. Kufner,et al.  Triebel, H., Interpolation Theory, Function Spaces, Differential Operators. Berlin, VEB Deutscher Verlag der Wissenschaften 1978. 528 S., M 87,50 , 1979 .

[10]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[11]  Zhen-Qing Chen,et al.  Heat kernel estimates for jump processes of mixed types on metric measure spaces , 2007 .

[12]  M. T. Barlow,et al.  Non-local dirichlet forms and symmetric jump processes , 2006 .

[13]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[14]  Zhen-Qing Chen,et al.  Heat kernel estimates for stable-like processes on d-sets , 2003 .

[15]  M. Kassmann,et al.  Jump processes, ℒ-harmonic functions, continuity estimates and the Feller property , 2009 .

[16]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[17]  F. John,et al.  On functions of bounded mean oscillation , 1961 .

[18]  R. Bass,et al.  Harnack Inequalities for Jump Processes , 2002 .

[19]  Jens Frehse An irregular complex valued solution to a scalar uniformly elliptic equation , 2008 .

[20]  Y. Netrusov Some imbedding theorems for spaces of Besov-Morrey type , 1987 .

[21]  M. Fukushima On an Lp-Estimate of Resolvents of Markov Processes , 1977 .

[22]  M. Kassmann Mathematik in den Naturwissenschaften Leipzig An Analytic Approach to Purely Nonlocal Bellman Equations Arising in Models of Stochastic Control , 2006 .

[23]  Neil S. Trudinger,et al.  On harnack type inequalities and their application to quasilinear elliptic equations , 1967 .

[24]  Markov Chain Approximations for Symmetric Jump Processes , 2006, math/0611934.

[25]  U. Gianazza,et al.  Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations , 2006 .

[26]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[27]  Angela Kunoth,et al.  An adaptive wavelet viscosity method for hyperbolic conservation laws , 2008 .

[28]  J. Moser On Harnack's theorem for elliptic differential equations† , 1961 .