Antibandwidth of d-Dimensional Meshes

The antibandwidth problem is to label vertices of a graph G = (V,E) bijectively by 0,1,2,,...,|V| ? 1 such that the minimal difference of labels of adjacent vertices is maximised. In this paper we discuss the antibandwidth of d-dimensional meshes. We provide labelling algorithm giving antibandwidth value matching the upper bound up to the third order term. This work is a continuation of our previous results for antibandwidths of two and three-dimensional meshes and hypercubes.

[1]  Béla Bollobás,et al.  Compressions and isoperimetric inequalities , 1990, J. Comb. Theory, Ser. A.

[2]  Imrich Vrto,et al.  Antibandwidth of Three-Dimensional Meshes , 2007, Electron. Notes Discret. Math..

[3]  Béla Bollobás,et al.  Erratum to “Parallel machine scheduling with time dependent processing times” [Discrete Appl. Math. 70 (1996) 81–93] , 1997 .

[4]  Reza Akhtar,et al.  Asymptotic Determination of Edge-Bandwidth of Multidimensional Grids and Hamming Graphs , 2008, SIAM J. Discret. Math..

[5]  Don Chakerian,et al.  Cube Slices, Pictorial Triangles, and Probability , 1991 .

[6]  Paola Cappanera A Survey on Obnoxious Facility Location Problems , 1999 .

[7]  Annalisa Massini,et al.  Antibandwidth of Complete k-Ary Trees , 2006, Electron. Notes Discret. Math..

[8]  André Raspaud,et al.  Antibandwidth and cyclic antibandwidth of meshes and hypercubes , 2009, Discret. Math..

[9]  Dan Pritikin,et al.  On the separation number of a graph , 1989, Networks.

[10]  I. Anderson Combinatorics of Finite Sets , 1987 .

[11]  JOSEP DÍAZ,et al.  A survey of graph layout problems , 2002, CSUR.

[12]  Oliver Vornberger,et al.  On Some Variants of the Bandwidth Minimization Problem , 1984, SIAM J. Comput..

[13]  Sorina Dumitrescu,et al.  On explicit formulas for bandwidth and antibandwidth of hypercubes , 2009, Discret. Appl. Math..

[14]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[15]  F. Gobel The separation number , 1994 .

[16]  Garth Isaak Powers of Hamiltonian paths in interval graphs , 1998 .

[17]  Garth Isaak,et al.  Hamiltonian powers in threshold and arborescent comparability graphs , 1999, Discret. Math..

[18]  Zevi Miller,et al.  Separation numbers of trees , 2009, Theor. Comput. Sci..