Magnesium-Based Composites for Degradable Implant Applications

[1]  N. Al-Aqeeli,et al.  Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties , 2019, Journal of Alloys and Compounds.

[2]  B. Sunil,et al.  Magnesium/fish bone derived hydroxyapatite composites by friction stir processing: studies on mechanical behaviour and corrosion resistance , 2019, Bulletin of Materials Science.

[3]  M. Krishna,et al.  Magnesium matrix composites for biomedical applications: A review , 2019, Journal of Magnesium and Alloys.

[4]  V. Balaji,et al.  Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash(CSA) reinforced aluminium (Al 6082) matrix hybrid composite , 2018, Journal of Alloys and Compounds.

[5]  Jiye Cai,et al.  The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications , 2018, Bioinorganic chemistry and applications.

[6]  P. Roy,et al.  Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories. , 2018, Journal of the mechanical behavior of biomedical materials.

[7]  D. Sreekanth,et al.  Insight of magnesium alloys and composites for orthopedic implant applications – a review , 2017 .

[8]  Meysam Haghshenas,et al.  Mechanical characteristics of biodegradable magnesium matrix composites: A review , 2017 .

[9]  M. A. Rodríguez,et al.  Calcium phosphates for biomedical applications , 2017 .

[10]  B. Sunil,et al.  Producing hydroxyapatite from fish bones by heat treatment , 2016 .

[11]  Lu Chen,et al.  AZ91 Magnesium Alloy/Porous Hydroxyapatite Composite for Potential Application in Bone Repair , 2016 .

[12]  James F Curtin,et al.  Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. , 2016, Materials science & engineering. C, Materials for biological applications.

[13]  J. L. Drury,et al.  Zirconia in biomedical applications , 2016, Expert review of medical devices.

[14]  Ke Yang,et al.  Recent advances on the development of biodegradable magnesium alloys: a review , 2016 .

[15]  P. Karasiński,et al.  Investigations of mechanical properties of SiO2 coatings deposited by sol-gel method on cpTi and Ti-6Al-7Nb alloy , 2016 .

[16]  J. Kubásek,et al.  The effect of hydroxyapatite reinforcement and preparation methods on the structure and mechanical properties of Mg-HA composites , 2017 .

[17]  M. Gupta,et al.  Synthesis and characterization of high performance low volume fraction TiC reinforced Mg nanocomposites targeting biocompatible/structural applications , 2015 .

[18]  M. Gupta,et al.  Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications , 2015 .

[19]  S. Suwas,et al.  Nano-ZnO particle addition to monolithic magnesium for enhanced tensile and compressive response , 2014 .

[20]  C Ganapathy,et al.  Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants. , 2014, Journal of the mechanical behavior of biomedical materials.

[21]  M. Gupta,et al.  Enhancing overall tensile and compressive response of pure Mg using nano-TiB2 particulates , 2014 .

[22]  Mukesh Doble,et al.  Friction stir processing of magnesium-nanohydroxyapatite composites with controlled in vitro degradation behavior. , 2014, Materials science & engineering. C, Materials for biological applications.

[23]  Minfang Chen,et al.  The effect of nano-hydroxyapatite on the microstructure and properties of Mg–3Zn–0.5Zr alloy , 2014 .

[24]  M. Doble,et al.  Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites , 2014, Journal of Materials Science: Materials in Medicine.

[25]  H. Hong,et al.  Biomedical applications of zinc oxide nanomaterials. , 2013, Current molecular medicine.

[26]  K. May-Newman,et al.  Viability of Titanium-Titanium Boride Composite as a Biomaterial , 2013 .

[27]  V. Muthupandi,et al.  Plasma Electrolytic Oxidation and Characterization of Spark Plasma Sintered Magnesium/Hydroxyapatite Composites , 2013 .

[28]  H. Yang,et al.  Recent progress in biomedical applications of titanium dioxide. , 2013, Physical chemistry chemical physics : PCCP.

[29]  Kwon Ho Koo,et al.  Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: A Literature Review , 2013, Safety and health at work.

[30]  Fadei F. Komarov,et al.  Adhesive strength, superhardness, and the phase and elemental compositions of nanostructured coatings based on Ti-Hf-Si-N , 2012 .

[31]  A R Boccaccini,et al.  Biomedical coatings on magnesium alloys - a review. , 2012, Acta biomaterialia.

[32]  K. Khalil,et al.  Effect of high-frequency induction heat sintering conditions on the microstructure and mechanical properties of nanostructured magnesium/hydroxyapatite nanocomposites , 2012 .

[33]  B. Ratna Sunil,et al.  Bioactive Grain Refined Magnesium by Friction Stir Processing , 2012 .

[34]  Wei-jia Tang,et al.  On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction , 2012 .

[35]  G. Dias,et al.  Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. , 2012, Acta biomaterialia.

[36]  Shinhao Yang,et al.  The structure and mechanical properties of thick rutile–TiO2 films using different coating treatments , 2011 .

[37]  V. Beresnev,et al.  Effect of the preparation conditions on the phase composition, structure, and mechanical characteristics of vacuum-Arc Zr-Ti-Si-N coatings , 2011 .

[38]  Zhiming Yu,et al.  Biodegradable Behaviors of Mg-6%Zn-5%Hydroxyapatite Biomaterial , 2011 .

[39]  Ben Fabry,et al.  Control of magnesium corrosion and biocompatibility with biomimetic coatings. , 2011, Journal of biomedical materials research. Part B, Applied biomaterials.

[40]  M. Fathi,et al.  Fabrication and characterization of magnesium-fluorapatite nanocomposite for biomedical applications , 2010 .

[41]  Yufeng Zheng,et al.  Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites , 2010 .

[42]  Yufeng Zheng,et al.  A review on magnesium alloys as biodegradable materials , 2010 .

[43]  D. Mantovani,et al.  Developments in metallic biodegradable stents. , 2010, Acta biomaterialia.

[44]  K. Hong,et al.  Microstructure and mechanical properties of Mg-HAP composites , 2010 .

[45]  Vladimir V. Uglov,et al.  Nanocomposite protective coatings based on Ti-N-Cr/Ni-Cr-B-Si-Fe, their structure and properties , 2009 .

[46]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[47]  Frank Witte,et al.  Progress and Challenge for Magnesium Alloys as Biomaterials , 2008 .

[48]  Y. Estrin,et al.  Bio-corrosion of a magnesium alloy with different processing histories , 2008 .

[49]  María Vallet-Regí,et al.  Silica Materials for Medical Applications , 2008, The open biomedical engineering journal.

[50]  M. Gupta,et al.  Properties and deformation behaviour of Mg–Y2O3 nanocomposites , 2007 .

[51]  M. Störmer,et al.  Biodegradable magnesium-hydroxyapatite metal matrix composites. , 2007, Biomaterials.

[52]  Shizhe Song,et al.  A Possible Biodegradable Magnesium Implant Material , 2007 .

[53]  A. Pogrebnjak,et al.  TiN/Cr/Al2O3 and TiN/Al2O3 hybrid coatings structure features and properties resulting from combined treatment , 2006 .

[54]  M. Gupta,et al.  Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes , 2006 .

[55]  R. Mishra,et al.  Friction stir processing: a novel technique for fabrication of surface composite , 2003 .

[56]  E. Denkhaus,et al.  Nickel essentiality, toxicity, and carcinogenicity. , 2002, Critical reviews in oncology/hematology.

[57]  G. Song,et al.  Corrosion mechanisms of magnesium alloys , 1999 .

[58]  P. Parikh Alumina Ceramics: Engineering Applications and Domestic Market Potential , 1995 .

[59]  M. Mohanty Medical Applications of Alumina Ceramics , 1995 .

[60]  L. Fishbein Overview of analysis of carcinogenic and/or mutagenic metals in biological and environmental samples. I. Arsenic, beryllium, cadmium, chromium and selenium. , 1984, International journal of environmental analytical chemistry.

[61]  A. S. Posner Handbook of Stable Strontium. Stanley C. Skoryna , 1982 .

[62]  I. H. Tipton,et al.  Essential trace metals in man: manganese. A study in homeostasis. , 1966, Journal of chronic diseases.