Pre-processor for bioinspired optical flow models: a customizable hardware implementation

Nature has optimized the processing of visual information, especially in primates. The estimation of optical flow is a complex task that gives information about ego-motion, and permits tracking objects from a given scene. The multi-channel spatio-temporal filtering required to detect motion is suitable for a parallel implementation on reconfigurable circuitry. We detail here the design of a neuromorphic FPGA implementation of the pre-processing stages for optical flow estimation that permits highly parallel real-time filtering

[1]  Unai Bidarte,et al.  Optical Flow Estimator Using VHDL for Implementation in FPGA , .

[2]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[3]  R. F. Hess,et al.  Temporal properties of human visual filters: number, shapes and spatial covariation , 1992, Vision Research.

[4]  A. Zuloaga,et al.  High Speed Architecture for Image Sequence Processing Described with VHDL , 2022 .

[5]  Fernando Pardo,et al.  A reconfigurable architecture for autonomous visual-navigation , 2003, Machine Vision and Applications.

[6]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[7]  Keith Langley,et al.  Recursive Filters for Optical Flow , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  César Torres-Huitzil,et al.  Real-time image processing with a compact FPGA-based systolic architecture , 2004, Real Time Imaging.

[9]  Norihiro Sadato,et al.  Role of the superior temporal region in human visual motion perception. , 2005, Cerebral cortex.

[10]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[11]  Miguel O. Arias-Estrada,et al.  FPGA Processor for Real-Time Optical Flow Computation , 2003, FPL.

[12]  Ta Camus,et al.  Real-time quantized optical flow , 1995, Proceedings of Conference on Computer Architectures for Machine Perception.

[13]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[14]  Peter W. McOwan,et al.  A Multi-Differential Neuromorphic Approach to Motion Detection , 1999, Int. J. Neural Syst..