Subjective Quantification of Perceptual Interactions among some 2D Scientific Visualization Methods

We present an evaluation of a parameterized set of 2D icon-based visualization methods where we quantified how perceptual interactions among visual elements affect effective data exploration. During the experiment, subjects quantified three different design factors for each method: the spatial resolution it could represent, the number of data values it could display at each point, and the degree to which it is visually linear. The class of visualization methods includes Poisson-disk distributed icons where icon size, icon spacing, and icon brightness can be set to a constant or coupled to data values from a 2D scalar field. By only coupling one of those visual components to data, we measured filtering interference for all three design factors. Filtering interference characterizes how different levels of the constant visual elements affect the evaluation of the data-coupled element. Our novel experimental methodology allowed us to generalize this perceptual information, gathered using ad-hoc artificial datasets, onto quantitative rules for visualizing real scientific datasets. This work also provides a framework for evaluating visualizations of multi-valued data that incorporate additional visual cues, such as icon orientation or color

[1]  R. B. Macleod,et al.  A Source Book Of Gestalt Psychology , 1939 .

[2]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[3]  George McCleary,et al.  An Effective Graphic "Vocabulary" , 1983, IEEE Computer Graphics and Applications.

[4]  T. Callaghan Dimensional interaction of hue and brightness in preattentive field segregation , 1984, Perception & psychophysics.

[5]  W. Cleveland,et al.  Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods , 1984 .

[6]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[7]  T. Callaghan Interference and dominance in texture segregation: Hue, geometric form, and line orientation , 1989, Perception & psychophysics.

[8]  C D Wickens,et al.  The perceptual interaction of graphical attributes: Configurality, stimulus homogeneity, and object integration , 1990, Perception & psychophysics.

[9]  Philip K. Robertson,et al.  A methodology for choosing data representations , 1991, IEEE Computer Graphics and Applications.

[10]  Stephen M. Casner,et al.  Task-analytic approach to the automated design of graphic presentations , 1991, TOGS.

[11]  James T. Enns,et al.  Harnessing Preattentive Processes for Multivariate Data Visualization , 1992 .

[12]  Stephen G. Eick,et al.  Engineering Perceptually Effective Visualizations for Abstract Data , 1994, Scientific Visualization.

[13]  Hikmet Senay,et al.  A knowledge-based system for visualization design , 1994, IEEE Computer Graphics and Applications.

[14]  Steffen Lange,et al.  Problem-oriented visualization of multi-dimensional data sets , 1995 .

[15]  Susanne Lange Problem-oriented visualisation of multi-dimensional data sets , 2007 .

[16]  James T. Enns,et al.  High-speed visual estimation using preattentive processing , 1996, TCHI.

[17]  Jock D. Mackinlay,et al.  The structure of the information visualization design space , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[18]  Deborah Hix,et al.  Graphical encoding for information visualization: using icon color, shape, and size to convey nominal and quantitative data , 1997 .

[19]  Alan M. MacEachren,et al.  Exploratory cartographic visualization: advancing the agenda , 1997 .

[20]  Robert St. Amant,et al.  ViA: a perceptual visualization assistant , 2000, Applied Imaging Pattern Recognition.

[21]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[22]  Ed H. Chi,et al.  A taxonomy of visualization techniques using the data state reference model , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[23]  David H. Laidlaw,et al.  Loose, Artistic "Textures" for Visualization , 2001, IEEE Computer Graphics and Applications.

[24]  Rajehndra Nagappan Compositional model for multidimensional data visualization , 2001, IS&T/SPIE Electronic Imaging.

[25]  Braithwaite Jj Visual search in space and time : where attention and inattention collide?. , 2002 .

[26]  Victoria Interrante,et al.  User Studies: Why, How, and When? , 2003, IEEE Computer Graphics and Applications.

[27]  Daniel Acevedo Feliz,et al.  Designer-critiqued comparison of 2D vector visualization methods: a pilot study , 2003, SIGGRAPH '03.

[28]  Frederick P. Brooks,et al.  Multivariate data visualization with data-driven spots , 2003 .

[29]  Chris R. Johnson Top Scientific Visualization Research Problems , 2004, IEEE Computer Graphics and Applications.

[30]  Bill Hibbard,et al.  The Top Five Problems that Motivated My Work , 2004, IEEE Computer Graphics and Applications.

[31]  Melanie Tory,et al.  Human factors in visualization research , 2004, IEEE Transactions on Visualization and Computer Graphics.

[32]  Kwan-Liu Ma Teaching visualization , 2005, COMG.

[33]  Hans Westman Computer graphics: what's it all about? , 2005, COMG.

[34]  Robert Michael Kirby,et al.  Comparing 2D vector field visualization methods: a user study , 2005, IEEE Transactions on Visualization and Computer Graphics.

[35]  David H. Laidlaw,et al.  Artistic Collaboration in Designing VR Visualizations , 2005, IEEE Computer Graphics and Applications.

[36]  Daniel Acevedo Feliz,et al.  Using Visual Design Expertise to Characterize the Effectiveness of 2D Scientific Visualization Methods , 2005, IEEE Visualization.