Small Baseline Stereovision

Abstract This paper presents a study of small baseline stereovision. It is generally admitted that because of the finite resolution of images, getting a good precision in depth from stereovision demands a large angle between the views. In this paper, we show that under simple and feasible hypotheses, small baseline stereovision can be rehabilitated and even favoured. The main hypothesis is that the images should be band limited, in order to achieve sub-pixel precisions in the matching process. This assumption is not satisfied for common stereo pairs. Yet, this becomes realistic for recent spatial or aerian acquisition devices. In this context, block-matching methods, which had become somewhat obsolete for large baseline stereovision, regain their relevance. A multi-scale algorithm dedicated to small baseline stereovision is described along with experiments on small angle stereo pairs at the end of the paper.

[1]  Bernard Rouge,et al.  Estimation non biaisée de décalages subpixelaires sur des images SPOT , 2001 .

[2]  Nanning Zheng,et al.  Stereo Matching Using Belief Propagation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Richard Szeliski,et al.  Sampling the disparity space image , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Olivier D. Faugeras,et al.  The geometry of multiple images - the laws that govern the formation of multiple images of a scene and some of their applications , 2001 .

[5]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[6]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[7]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[8]  Julie Delon,et al.  Le phénomène d'adhérence en stéréoscopie dépend du critère de corrélation , 2001 .

[9]  Laurent Moll,et al.  Real time correlation-based stereo: algorithm, implementations and applications , 1993 .

[10]  Rachid Deriche,et al.  Dense Disparity Map Estimation Respecting Image Discontinuities: A PDE and Scale-Space BasedApproach , 2002, MVA.

[11]  Jitendra Malik,et al.  A Computational Framework for Determining Stereo Correspondence from a Set of Linear Spatial Filters , 1991, ECCV.

[12]  Takeo Kanade,et al.  Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[14]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[15]  Ingemar J. Cox,et al.  A Maximum Likelihood Stereo Algorithm , 1996, Comput. Vis. Image Underst..

[16]  O. Faugeras,et al.  The Geometry of Multiple Images , 1999 .

[17]  Jitendra Malik,et al.  Computational framework for determining stereo correspondence from a set of linear spatial filters , 1992, Image Vis. Comput..