Extensional Crisis and Proving Identity
暂无分享,去创建一个
Andrei Voronkov | Laura Kovács | Ashutosh Gupta | Bernhard Kragl | A. Voronkov | Ashutosh Gupta | L. Kovács | Bernhard Kragl
[1] Henny B. Sipma,et al. What's Decidable About Arrays? , 2006, VMCAI.
[2] Nikolaj Bjørner,et al. Z3: An Efficient SMT Solver , 2008, TACAS.
[3] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure , 2009, Journal of Automated Reasoning.
[4] Tomás Vojnar,et al. What Else Is Decidable about Integer Arrays? , 2008, FoSSaCS.
[5] Robert S. Boyer,et al. Computer Proofs of Limit Theorems , 1971, IJCAI.
[6] Nikolaj Bjørner,et al. Generalized, efficient array decision procedures , 2009, 2009 Formal Methods in Computer-Aided Design.
[7] Leonardo Mendonça de Moura,et al. Computation in Real Closed Infinitesimal and Transcendental Extensions of the Rationals , 2013, CADE.
[8] Geoff Sutcliffe,et al. The state of CASC , 2006, AI Commun..
[9] Stephan Schulz,et al. System Description: E 1.8 , 2013, LPAR.
[10] Larry Wos,et al. What Is Automated Reasoning? , 1987, J. Autom. Reason..
[11] Peter Baumgartner,et al. Hierarchic Superposition with Weak Abstraction , 2013, CADE.
[12] Harald Ganzinger,et al. Theory Instantiation , 2006, LPAR.
[13] Philipp Rümmer,et al. E-Matching with Free Variables , 2012, LPAR.
[14] Maria Paola Bonacina,et al. New results on rewrite-based satisfiability procedures , 2006, TOCL.
[15] Harald Ganzinger,et al. Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.
[16] Frank Wolter,et al. Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.
[17] Andrei Voronkov,et al. Limited resource strategy in resolution theorem proving , 2003, J. Symb. Comput..
[18] Rajeev Alur,et al. A Temporal Logic of Nested Calls and Returns , 2004, TACAS.
[19] Ian Stark,et al. Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.
[20] Andrei Voronkov,et al. First-Order Theorem Proving and Vampire , 2013, CAV.
[21] Albert Rubio,et al. Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.
[22] Konstantin Korovin,et al. iProver - An Instantiation-Based Theorem Prover for First-Order Logic (System Description) , 2008, IJCAR.
[23] Harald Ganzinger,et al. Refutational theorem proving for hierarchic first-order theories , 1994, Applicable Algebra in Engineering, Communication and Computing.