Unusual change in the Dirac-cone energy band upon a two-step magnetic transition in CeBi

We have performed angle-resolved photoemission spectroscopy (ARPES) on CeBi which undergoes a two-step antiferromagnetic (AF) transition with temperature. Soft-x-ray ARPES has revealed the inverted band structure at the X point of bulk Brillouin zone for CeBi (and also for LaBi) as opposed to LaSb with non-inverted band structure. Low-energy ARPES on CeBi has revealed the Dirac-cone band at the Gamma point in the paramagnetic phase associated with the bulk band inversion. On the other hand, a double Dirac-cone band appears on entering the first AF phase at T = 25 K, whereas a single Dirac-cone band recovers below the second AF transition at T = 14 K. The present result suggests an intricate interplay between antiferromagnetism and topological surface states in CeBi.

[1]  J. Shim,et al.  Direct visualization of coexisting channels of interaction in CeSb , 2017, Science Advances.

[2]  Yuan Su,et al.  Unusual magnetotransport in holmium monoantimonide , 2018, Physical Review B.

[3]  Yang Liu,et al.  Tunable Topological Surface States in Rare Earth Mono-Bismuthides with Partially Filled f Shell. , 2018 .

[4]  Yang Liu,et al.  Tunable electronic structure and surface states in rare-earth monobismuthides with partially filled f shell , 2018, Physical Review B.

[5]  Peng Chen,et al.  Anomalous Z 2 antiferromagnetic topological phase in pressurized SmB 6 , 2017, 1710.10423.

[6]  Hongyun Zhang,et al.  Extremely large magnetoresistance and electronic structure of TmSb , 2017, 1710.08241.

[7]  Timur K. Kim,et al.  Experimental Determination of the Topological Phase Diagram in Cerium Monopnictides. , 2017, Physical review letters.

[8]  J. Checkelsky,et al.  Extreme magnetoresistance in magnetic rare-earth monopnictides , 2017, 1704.04226.

[9]  Yugui Yao,et al.  Experimental observation of node-line-like surface states in LaBi , 2017, 1711.11174.

[10]  P. Guo,et al.  Theoretical study of the pressure-induced topological phase transition in LaSb , 2017 .

[11]  H. Kumigashira,et al.  Three-dimensional band structure of LaSb and CeSb: Absence of band inversion , 2017, 1707.05100.

[12]  J. Zhang,et al.  Large magnetoresistance and Fermi surface topology of PrSb , 2017, 1707.04162.

[13]  T. Iitaka,et al.  Predicted Weyl fermions in magnetic GdBi and GdSb , 2017 .

[14]  Yongbin Lee,et al.  Electronic structure of RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy , 2017, 1704.06237.

[15]  B. Satpati,et al.  Fermi surface topology and signature of surface Dirac nodes in LaBi , 2017, Scientific Reports.

[16]  Binghai Yan,et al.  Model Hamiltonian and time reversal breaking topological phases of antiferromagnetic half-Heusler materials , 2017, 1704.01138.

[17]  C. Felser,et al.  Magnetic field induced strong valley polarization in the three-dimensional topological semimetal LaBi , 2017, 1703.02331.

[18]  N. Hao,et al.  Topological crystalline antiferromagnetic state in tetragonal FeS , 2017, 1702.01372.

[19]  T. Qian,et al.  Evidence of topological insulator state in the semimetal LaBi , 2016, 1612.03589.

[20]  M. Cuoco,et al.  Topological gapless phases in nonsymmorphic antiferromagnets , 2016, 1609.06916.

[21]  Hyunsoo Yang,et al.  Tuning the electronic and the crystalline structure of LaBi by pressure: From extreme magnetoresistance to superconductivity , 2016, 1607.03560.

[22]  G. Fecher,et al.  Multiple Dirac cones at the surface of the topological metal LaBi , 2016, Nature Communications.

[23]  Y. J. Zhang,et al.  Possible Weyl fermions in the magnetic Kondo system CeSb , 2016, 1611.02927.

[24]  J. Mitchell,et al.  Distinct Electronic Structure for the Extreme Magnetoresistance in YSb. , 2016, Physical review letters.

[25]  D. Feng,et al.  Presence of exotic electronic surface states in LaBi and LaSb , 2016, 1607.04178.

[26]  P. Canfield,et al.  Asymmetric mass acquisition in LaBi: Topological semimetal candidate , 2016, 1604.08945.

[27]  T. Qian,et al.  Compensated Semimetal LaSb with Unsaturated Magnetoresistance. , 2016, Physical review letters.

[28]  P. Guo,et al.  Charge compensation in extremely large magnetoresistance materials LaSb and LaBi revealed by first-principles calculations , 2016, 1602.05061.

[29]  Q. Gibson,et al.  Temperature−field phase diagram of extreme magnetoresistance , 2016, Proceedings of the National Academy of Sciences.

[30]  C. Felser,et al.  Observation of pseudo-two-dimensional electron transport in the rock salt-type topological semimetal LaBi , 2016, 1601.07494.

[31]  Qi Wang,et al.  Large magnetoresistance in LaBi: origin of field-induced resistivity upturn and plateau in compensated semimetals , 2016, 1601.04618.

[32]  A. V. Golubkov,et al.  Electrical resistivity and Hall effect in lanthanum monobismuthide in magnetic fields to 13 T , 2015 .

[33]  Q. Gibson,et al.  Resistivity plateau and extreme magnetoresistance in LaSb , 2015, Nature Physics.

[34]  C. Fang,et al.  New classes of three-dimensional topological crystalline insulators: Nonsymmorphic and magnetic , 2015 .

[35]  R. A. Muller,et al.  Magnetic structure of GdBiPt: A candidate antiferromagnetic topological insulator , 2014, 1406.6663.

[36]  Chaoxing Liu,et al.  Topological magnetic crystalline insulators and corepresentation theory , 2014, 1401.6922.

[37]  Chaoxing Liu,et al.  Topological nonsymmorphic crystalline insulators , 2013, 1308.4717.

[38]  Y. Ohta,et al.  Antiferromagnetic topological insulator state in the correlated Bernevig-Hughes-Zhang model , 2013, 1304.7933.

[39]  M. Gilbert,et al.  Topological insulators with commensurate antiferromagnetism , 2013, 1304.6081.

[40]  S. Fujimoto,et al.  Topological antiferromagnetic phase in a correlated Bernevig-Hughes-Zhang model , 2012, 1207.4547.

[41]  Shun-Qing Shen,et al.  Quantum spin Hall effect induced by nonmagnetic and magnetic staggered potentials , 2011, 1101.4064.

[42]  Joel E. Moore,et al.  Antiferromagnetic topological insulators , 2010, 1004.1403.

[43]  Takashi Takahashi,et al.  Magnetic Phase Transition of CeSb Studied by Low-Energy Angle-Resolved Photoemission Spectroscopy , 2009 .

[44]  H. Kitazawa,et al.  Para- to antiferro-magnetic phase transition of CeSb studied by ultrahigh-resolution angle-resolved photoemission spectroscopy , 2004 .

[45]  K. Iwasa,et al.  Direct observation of the modulation of the 4f-electron orbital state by strong p-f mixing in CeSb. , 2002, Physical review letters.

[46]  K. Iwasa,et al.  Physics of low-carrier system detected by neutron and X-ray scattering: Ce-monopnictides case , 2000 .

[47]  H. Kumigashira,et al.  PARAMAGNETIC-TO-ANTIFERROPARAMAGNETIC PHASE TRANSITION OF CESB STUDIED BY HIGH-RESOLUTION ANGLE-RESOLVED PHOTOEMISSION , 1997 .

[48]  O. Sakai,et al.  Observation of Heavy Hole State in CeSb , 1994 .

[49]  T. Kasuya,et al.  Physics in low carrier strong correlation systems , 1993 .

[50]  N. Mōri,et al.  Pressure induced electrical and magnetic properties in Ce-monopnictides; CeX(X = P, As, Sb and Bi) , 1992 .

[51]  K. Takegahara,et al.  The magnetic phase transitions in Ce-monopnictides, strong p-f mixing effect , 1990 .

[52]  K. Nakanishi Nonlinear Effect on the Axial Next-Nearest Neighbor Ising (ANNNI) Model: Application to CeSb , 1989 .

[53]  T. Kasuya,et al.  Heavy hole state in CeSb , 1988 .

[54]  H. Takahashi,et al.  Anisotropic p-f mixing mechanism explaining anomalous magnetic properties in Ce monopnictides. III. Paramagnetic state , 1985 .

[55]  H. Takahashi,et al.  Anisotropic p-f mixing mechanism explaining anomalous magnetic properties in Ce monopnictides. VI. f-f interaction via p-f mixing , 1985 .

[56]  H. Takahashi,et al.  Anisotropic p-f mixing mechanism explaining anomalous magnetic properties in Ce monopnictides. I. Effective 4f level , 1985 .

[57]  H. Takahashi,et al.  Anisotropic p-f mixing mechanism explaining anomalous magnetic properties in Ce monopnictides. II. Crystal-field splitting in rare-earth pnictides , 1985 .

[58]  H. Takahashi,et al.  Anisotropic p-f mixing mechanism explaining anomalous magnetic properties in Ce monopnictides. V. Various ordered states and phase diagrams , 1985 .

[59]  A. Hasegawa Fermi Surface of LaSb and LaBi , 1985 .

[60]  D. Ravot,et al.  Magnetic properties of cerium monopnictides , 1983 .

[61]  J. Allen,et al.  Resonant Photoemission Studies of Mixed-Valence, Reduced-Moment, and Antiferromagnetic Cerium Compounds , 1981 .

[62]  M. Croft,et al.  Evidence of 4f photoemission satellites in cerium compounds , 1981 .

[63]  W. Hälg,et al.  Neutron spectroscopy in the cerium monopnictides , 1979 .

[64]  J. Rossat-Mignod,et al.  Hydrostatic pressure effects and neutron diffraction studies of CeBi phase diagram , 1979 .

[65]  P. Bak,et al.  Devil's Stairs and the Commensurate-Commensurate Transitions in CeSb , 1979 .

[66]  J. Villain,et al.  Phase diagram and magnetic structures of CeSb , 1977 .