Rate-bias-dependent hysteresis modeling of a magnetostrictive transducer

We suggest a new hysteresis model that can describe rate and bias effects of the harmonic magnetic fields on hysteresis nonlinearities of a magnetostrictive actuator. The proposed model is constructed using the generalized rate-dependent Prandtl-Ishlinskii model that incorporates a rate-bias-dependent threshold and a memoryless functions. The results show that the proposed model can characterize the asymmetric hysteresis effects under different levels of input magnetic bias which are applied at different excitation frequencies.

[1]  M. A. Janaideh,et al.  Prandtl–Ishlinskii hysteresis models for complex time dependent hysteresis nonlinearities , 2012 .

[2]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[3]  Ciro Visone,et al.  Identification and compensation of Preisach hysteresis models for magnetostrictive actuators , 2001 .

[4]  José L. Pons,et al.  Emerging Actuator Technologies: A Micromechatronic Approach , 2005 .

[5]  S. Karunanidhi,et al.  Design, analysis and simulation of magnetostrictive actuator and its application to high dynamic servo valve , 2010 .

[6]  M. Al Janaideh,et al.  Inverse Rate-Dependent Prandtl–Ishlinskii Model for Feedforward Compensation of Hysteresis in a Piezomicropositioning Actuator , 2013, IEEE/ASME Transactions on Mechatronics.

[7]  John S. Baras,et al.  Modeling and control of hysteresis in magnetostrictive actuators , 2004, Autom..

[8]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[9]  Aihua Meng,et al.  Modeling of Terfenol-D Biased Minor Hysteresis Loops , 2013, IEEE Transactions on Magnetics.

[10]  I. Mayergoyz,et al.  Preisach modeling of magnetostrictive hysteresis , 1991 .

[11]  Mårten Sjöström,et al.  Exact invertible hysteresis models based on play operators , 2004 .

[12]  Ralph C. Smith Smart Material Systems , 2005 .

[13]  Dennis S. Bernstein,et al.  Why are some hysteresis loops shaped like a butterfly? , 2009, ACC.

[14]  Ralph C. Smith,et al.  Quantification of hysteresis and nonlinear effects on the frequency response of ferroelectric and ferromagnetic materials , 2009 .

[15]  M. A. Janaideh,et al.  An inversion formula for a Prandtl–Ishlinskii operator with time dependent thresholds☆ , 2011 .

[16]  P. Krejčí Hysteresis and periodic solutions of semilinear and quasilinear wave equations , 1986 .

[17]  D. Davino,et al.  Design and Test of a Stress-Dependent Compensator for Magnetostrictive Actuators , 2010, IEEE Transactions on Magnetics.

[18]  D. Davino,et al.  Phenomenological dynamic model of a magnetostrictive actuator , 2004 .

[19]  Chun-Yi Su,et al.  Inverse generalized asymmetric Prandtl-Ishlinskii model for compensation of hysteresis nonlinearities in smart actuators , 2009, 2009 International Conference on Networking, Sensing and Control.

[20]  Xiaobo Tan,et al.  Optimal Compression of a Generalized Prandtl-Ishlinskii Operator in Hysteresis Modeling , 2013 .

[21]  Chun-Yi Su,et al.  Compensation of rate-dependent hysteresis nonlinearities in a magnetostrictive actuator using an inverse Prandtl–Ishlinskii model , 2013 .

[22]  Paolo Nistri,et al.  Mathematical Models for Hysteresis , 1993, SIAM Rev..

[23]  Micky Rakotondrabe Smart Materials-Based Actuators at the Micro/Nano-Scale , 2013 .

[24]  Chun-Yi Su,et al.  Experimental characterization and modeling of rate-dependent asymmetric hysteresis of magnetostrictive actuators , 2014 .

[25]  Daniele Davino,et al.  A fast compensation algorithm for real-time control of magnetostrictive actuators , 2005 .

[26]  Ralph C. Smith Hysteresis Modeling in Magnetostrictive Materials Via Preisach Operators , 1997 .

[27]  Liu Meie,et al.  液晶エラストマー片持梁の光‐熱‐機械的駆動の曲げとスナップ動力学 , 2014 .

[28]  Dennis S. Bernstein,et al.  Why are some hysteresis loops shaped like a butterfly? , 2009, 2009 American Control Conference.

[29]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[30]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[31]  C. Natale,et al.  Feedback control systems for micropositioning tasks with hysteresis compensation , 2004, IEEE Transactions on Magnetics.

[32]  C. Visone,et al.  “Moving” Prandtl–Ishilinskii operators with compensator in a closed form , 2006 .

[33]  Óscar Oballe-Peinado,et al.  Hysteresis correction of tactile sensor response with a generalized Prandtl–Ishlinskii model , 2012 .

[34]  Daniele Davino,et al.  The piezo-magnetic parameters of Terfenol-D: An experimental viewpoint , 2012 .

[35]  Ying Feng,et al.  Robust control for shape memory alloy micro-actuators based flap positioning system , 2010, Proceedings of the 2010 American Control Conference.

[36]  M. A. Janaideh,et al.  Inversion of hysteresis and creep operators , 2012 .