Boundary Integral Evaluation of Surface Derivatives

In boundary element analysis, first order function derivatives, e.g., boundary potential gradient or stress tensor, can be accurately computed by evaluating the hypersingular integral equation for these quantities. However, this approach requires a complete integration over the boundary and is therefore computationally quite expensive. Herein it is shown that this method can be significantly simplified: only local singular integrals need to be evaluated. The procedure is based upon defining the singular integrals as a limit to the boundary and exploiting the ability to use both interior and exterior boundary limits. Test calculations for two- and three-dimensional problems demonstrate the accuracy of the method.

[1]  S. Li,et al.  Symmetric weak-form integral equation method for three-dimensional fracture analysis , 1998 .

[2]  Frank J. Rizzo,et al.  On boundary integral equations for crack problems , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  A. Frangi Regularization of Boundary Element formulations by the derivative transfer method , 1998 .

[4]  Potential gradient recovery using a local smoothing procedure in the Cauchy integral , 1999 .

[5]  L. F. Martha,et al.  Hypersingular integrals in boundary element fracture analysis , 1990 .

[6]  Stephan T. Grilli,et al.  A fully non‐linear model for three‐dimensional overturning waves over an arbitrary bottom , 2001 .

[7]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[8]  David D. Pollard,et al.  Slip distributions on intersecting normal faults , 1999 .

[9]  Leonard J. Gray,et al.  Direct Evaluation of Hypersingular Galerkin Surface Integrals , 2004, SIAM J. Sci. Comput..

[10]  Evaluation of gradients on the boundary using fully regularized hypersingular boundary integral equations , 1999 .

[11]  S. Sirtori General stress analysis method by means of integral equations and boundary elements , 1979 .

[12]  T. Kaplan,et al.  3D Galerkin integration without Stokes' theorem , 2001 .

[13]  Christoph Schwab,et al.  On the extraction technique in boundary integral equations , 1999, Mathematics of Computation.

[14]  G. Maier,et al.  Symmetric Galerkin Boundary Element Methods , 1998 .

[15]  F. J. Rizzo,et al.  A formulation and solution procedure for the general non-homogeneous elastic inclusion problem , 1968 .

[16]  Ren-Jye Yang,et al.  Boundary Integral Equations for Recovery of Design Sensitivities in Shape Optimization , 1988 .

[17]  Philippe Guyenne,et al.  A Fully Nonlinear Model for Three-dimensional Overturning Waves over Arbitrary Bottom 1 , 1997 .

[18]  Zhiye Zhao,et al.  Boundary stress calculation—a comparison study , 1999 .

[19]  L. Gray Evaluation of hypersingular integrals in the boundary element method , 1991 .

[20]  S. L. Crouch Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution , 1976 .

[21]  Herbert H. Einstein,et al.  Numerical modeling of fracture coalescence in a model rock material , 1998 .

[22]  T. A. Cruse,et al.  Smoothness–relaxation strategies for singular and hypersingular integral equations , 1998 .

[23]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[24]  Improved computation of stresses using the boundary element method , 1986 .

[25]  Abhijit Chandra,et al.  Boundary element methods in manufacturing , 1997 .

[26]  Stefan M. Holzer,et al.  How to deal with hypersingular integrals in the symmetric BEM , 1993 .

[27]  J. Sethian,et al.  Modelling a growth instability in a stressed solid , 2001 .

[28]  Masataka Tanaka,et al.  Boundary stress calculation using regularized boundary integral equation for displacement gradients , 1993 .

[29]  V. Mantič,et al.  A simple local smoothing scheme in strongly singular boundary integral representation of potential gradient , 1999 .

[30]  Spyros A. Kinnas,et al.  Numerical water tunnel in two and three dimensions , 1998 .

[31]  V. Mantič,et al.  A critical study of hypersingular and strongly singular boundary integral representations of potential gradient , 2000 .

[32]  M. G. Duffy,et al.  Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .

[33]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .

[34]  P. Maranesi,et al.  Analytical integrations for two-dimensional elastic analysis by the symmetric Galerkin boundary element method , 1999 .

[35]  J. Barbera,et al.  Contact mechanics , 1999 .

[36]  M. Bonnet Boundary Integral Equation Methods for Solids and Fluids , 1999 .

[37]  M. H. Aliabadi,et al.  Direct evaluation of boundary stresses in the 3D BEM of elastostatics , 1998 .

[38]  Zhiye Zhao INTERELEMENT STRESS EVALUATION BY BOUNDARY ELEMENTS , 1996 .

[39]  L. J. Gray,et al.  Evaluation of singular and hypersingular Galerkin integrals: direct limits and symbolic computation , 1998 .

[40]  H. D. Bui,et al.  Régularisation des équations intégrales de l'élastostatique et de l'élastodynamique , 1985 .

[41]  S. L. Crouch,et al.  Two-dimensional elastodynamic displacement discontinuity method , 1994 .

[42]  M. Guiggiani,et al.  Hypersingular formulation for boundary stress evaluation , 1994 .

[43]  J. Sethian,et al.  Wave breaking over sloping beaches using a coupled boundary integral-level set method , 2003 .

[44]  Leonard J. Gray,et al.  Improved quarter-point crack tip element , 2003 .

[45]  Leonard J. Gray,et al.  Galerkin boundary integral method for evaluating surface derivatives , 1998 .

[46]  Attilio Frangi,et al.  Symmetric BE method in two-dimensional elasticity: evaluation of double integrals for curved elements , 1996 .

[47]  F. Rizzo,et al.  HYPERSINGULAR INTEGRALS: HOW SMOOTH MUST THE DENSITY BE? , 1996 .

[48]  J. Sethian,et al.  Structural Boundary Design via Level Set and Immersed Interface Methods , 2000 .

[49]  Massimo Guiggiani,et al.  The evaluation of cauchy principal value integrals in the boundary element method-a review , 1991 .

[50]  L. Gray,et al.  Analytic evaluation of singular boundary integrals without CPV , 1993 .

[51]  J. Telles,et al.  A comparison between point collocation and Galerkin for stiffness matrices obtained by boundary elements , 1989 .

[52]  Alberto Salvadori,et al.  Analytical integrations of hypersingular kernel in 3D BEM problems , 2001 .

[53]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[54]  T. A. Cruse,et al.  Three-dimensional elastic stress analysis of a fracture specimen with an edge crack , 1971 .

[55]  Thomas Y. Hou,et al.  Boundary integral methods for multicomponent fluids and multiphase materials , 2001 .