A polynomial cycle canceling algorithm for submodular flows
暂无分享,去创建一个
[1] S. Fujishige. ALGORITHMS FOR SOLVING THE INDEPENDENT-FLOW PROBLEMS , 1978 .
[2] A. Schrijver. Total Dual Integrality from Directed Graphs, Crossing Families, and Sub- and Supermodular Functions , 1984 .
[3] 藤重 悟. Submodular functions and optimization , 1991 .
[4] Martin Grötschel,et al. Geometric Algorithms and Combinatorial Optimization , 1988, Algorithms and Combinatorics.
[5] Satoru Fujishige,et al. A Strongly Polynomial Algorithm for Minimum Cost Submodular Flow Problems , 1989, Math. Oper. Res..
[6] Uwe T. Zimmermann. Negative circuits for flows and submodular flows , 1992, Discret. Appl. Math..
[7] S. Fujishige,et al. A PRIMAL ALGORITHM FOR THE SUBMODULAR FLOW PROBLEM WITH MINIMUM-MEAN CYCLE SELECTION , 1988 .
[8] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[9] Richard M. Karp,et al. A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..
[10] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[11] Uwe T. Zimmermann,et al. A combinatorial interior point method for network flow problems , 1992, Math. Program..
[12] J. Edmonds,et al. A Min-Max Relation for Submodular Functions on Graphs , 1977 .
[13] Nimrod Megiddo,et al. Combinatorial optimization with rational objective functions , 1978, Math. Oper. Res..
[14] U. ZIMMERMANN,et al. Minimization on submodular flows , 1982, Discret. Appl. Math..
[15] Andrew V. Goldberg,et al. Finding minimum-cost circulations by canceling negative cycles , 1989, JACM.