A polynomial cycle canceling algorithm for submodular flows

Abstract.Submodular flow problems, introduced by Edmonds and Giles [2], generalize network flow problems. Many algorithms for solving network flow problems have been generalized to submodular flow problems (cf. references in Fujishige [4]), e.g. the cycle canceling method of Klein [9]. For network flow problems, the choice of minimum-mean cycles in Goldberg and Tarjan [6], and the choice of minimum-ratio cycles in Wallacher [12] lead to polynomial cycle canceling methods. For submodular flow problems, Cui and Fujishige [1] show finiteness for the minimum-mean cycle method while Zimmermann [16] develops a pseudo-polynomial minimum ratio cycle method. Here, we prove pseudo-polynomiality of a larger class of the minimum-ratio variants and, by combining both methods, we develop a polynomial cycle canceling algorithm for submodular flow problems.

[1]  S. Fujishige ALGORITHMS FOR SOLVING THE INDEPENDENT-FLOW PROBLEMS , 1978 .

[2]  A. Schrijver Total Dual Integrality from Directed Graphs, Crossing Families, and Sub- and Supermodular Functions , 1984 .

[3]  藤重 悟 Submodular functions and optimization , 1991 .

[4]  Martin Grötschel,et al.  Geometric Algorithms and Combinatorial Optimization , 1988, Algorithms and Combinatorics.

[5]  Satoru Fujishige,et al.  A Strongly Polynomial Algorithm for Minimum Cost Submodular Flow Problems , 1989, Math. Oper. Res..

[6]  Uwe T. Zimmermann Negative circuits for flows and submodular flows , 1992, Discret. Appl. Math..

[7]  S. Fujishige,et al.  A PRIMAL ALGORITHM FOR THE SUBMODULAR FLOW PROBLEM WITH MINIMUM-MEAN CYCLE SELECTION , 1988 .

[8]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[9]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[10]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[11]  Uwe T. Zimmermann,et al.  A combinatorial interior point method for network flow problems , 1992, Math. Program..

[12]  J. Edmonds,et al.  A Min-Max Relation for Submodular Functions on Graphs , 1977 .

[13]  Nimrod Megiddo,et al.  Combinatorial optimization with rational objective functions , 1978, Math. Oper. Res..

[14]  U. ZIMMERMANN,et al.  Minimization on submodular flows , 1982, Discret. Appl. Math..

[15]  Andrew V. Goldberg,et al.  Finding minimum-cost circulations by canceling negative cycles , 1989, JACM.