Rediscovering Hydrogel-Based Double-Diffusion Systems for Studying Biomineralization.

For those seeking to model biomineralization in vitro, hydrogels can serve as excellent models of the extracellular matrix (ECM) microenvironment. A major challenge posed in implementing such systems is the logistics involved, from fundamental engineering to experimental design. For the study of calcium phosphate (e.g., hydroxyapatite) formation, many researchers use hydrogel-based double-diffusion systems (DDSs). The various designs of these DDSs are seemingly as unique as their applications. In this Highlight, we present a survey of four distinct types of double-diffusion systems and evaluate them in the context of fundamental diffusion theory. Based upon this analysis, we present the design and evaluation of an optimized system. The techniques and framework for the evaluation and construction of a DDS presented here can be applied to any DDS that a researcher may want to implement for their particular studies of biomineralization.

[1]  M. R. Kumar,et al.  Collagen-Membrane-Induced Calcium Phosphate Electrocrystallization , 2011 .

[2]  J. Moradian-Oldak,et al.  Tooth enamel proteins enamelin and amelogenin cooperate to regulate the growth morphology of octacalcium phosphate crystals. , 2010, Crystal growth & design.

[3]  M. A. Hernández-Hernández,et al.  Silica Gel Template for Calcium Phosphates Crystallization , 2009 .

[4]  Xiangyun Song,et al.  Three-dimensional biomimetic mineralization of dense hydrogel templates. , 2009, Journal of the American Chemical Society.

[5]  K. Yubuta,et al.  Morphologically Controlled Fibrous Spherulites of an Apatite Precursor Biocrystal , 2009 .

[6]  E. Rosseeva,et al.  Synthesis, Characterization, and Morphogenesis of Carbonated Fluorapatite-Gelatine Nanocomposites: A Complex Biomimetic Approach toward the Mineralization of Hard Tissues , 2008 .

[7]  A. Boskey,et al.  Cell culture systems for studies of bone and tooth mineralization. , 2008, Chemical reviews.

[8]  G. Hunter,et al.  Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation. , 2008, Matrix biology : journal of the International Society for Matrix Biology.

[9]  M. Akashi,et al.  An Electrophoretic Approach Provides Tunable Mineralization Inside Agarose Gels , 2008 .

[10]  W. G. Lloyd,et al.  Diffusion in glassy polymers , 2007 .

[11]  M. Akashi,et al.  Novel biomineralization for hydrogels: electrophoresis approach accelerates hydroxyapatite formation in hydrogels. , 2006, Biomacromolecules.

[12]  J. Moradian-Oldak,et al.  Control of apatite crystal growth by the co-operative effect of a recombinant porcine amelogenin and fluoride. , 2006, European journal of oral sciences.

[13]  B. Pokric,et al.  Precipitation of calcium phosphates under conditions of double diffusion in collagen and gels of gelatin and agar , 1979, Calcified Tissue International.

[14]  J. Moradian-Oldak,et al.  Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. , 2005, Biomaterials.

[15]  Robert W. Balluffi,et al.  Kinetics Of Materials , 2005 .

[16]  A. Boskey,et al.  Importance of Phosphorylation for Osteopontin Regulation of Biomineralization , 2005, Calcified Tissue International.

[17]  A. Boskey,et al.  Diffusion Systems for Evaluation of Biomineralization , 2004, Calcified Tissue International.

[18]  J. Moradian-Oldak,et al.  Control of octacalcium phosphate and apatite crystal growth by amelogenin matrices , 2004 .

[19]  P. Simon,et al.  Phase formation and morphology of calcium phosphate–gelatine-composites grown by double diffusion technique: the influence of fluoride , 2004 .

[20]  M. Epple,et al.  A Model System to Provide a Good in Vitro Simulation of Biological Mineralization , 2004 .

[21]  S. Sano,et al.  A simplified counter diffusion method combined with a 1D simulation program for optimizing crystallization conditions. , 2004, Journal of synchrotron radiation.

[22]  S. Busch,et al.  Chemical and Structural Investigations of Biomimetically Grown Fluorapatite–Gelatin Composite Aggregates , 2003 .

[23]  J. Moradian-Oldak,et al.  Interactions of Amelogenins with Octacalcium Phosphate Crystal Faces Are Dose Dependent , 2004, Calcified Tissue International.

[24]  L. Gonzalez-Ramirez,et al.  Granada Crystallisation Box: a new device for protein crystallisation by counter-diffusion techniques. , 2002, Acta crystallographica. Section D, Biological crystallography.

[25]  J. Moradian-Oldak,et al.  Elongated Growth of Octacalcium Phosphate Crystals in Recombinant Amelogenin Gels under Controlled Ionic Flow , 2002 .

[26]  M. Epple,et al.  Crystallisation of calcium phosphates under constant conditions with a double diffusion set-up , 2001 .

[27]  R. Kniep,et al.  Morphogenesis and Structure of Human Teeth in Relation to Biomimetically Grown Fluorapatite−Gelatine Composites , 2001 .

[28]  M. Grynpas,et al.  Induction of collagen mineralization by a bone sialoprotein--decorin chimeric protein. , 2001, Journal of biomedical materials research.

[29]  D. Mooney,et al.  Hydrogels for tissue engineering. , 2001, Chemical reviews.

[30]  J. Moradian-Oldak,et al.  Effects of bovine amelogenins on the crystal morphology of octacalcium phosphate in a model system of tooth enamel formation , 2001 .

[31]  A. Boskey,et al.  Dentin Sialoprotein (DSP) Has Limited Effects on In Vitro Apatite Formation and Growth , 2000, Calcified Tissue International.

[32]  M. Gazzano,et al.  Control of the architectural assembly of octacalcium phosphate crystals in denatured collagenous matrices , 2000 .

[33]  T. Kawakami,et al.  BMP誘発「経コンドロイド骨形成」におけるTGF‐ベータのいくつかの役割 , 2000 .

[34]  T. Weiland,et al.  Biomimetic Morphogenesis of Fluorapatite‐Gelatin Composites: Fractal Growth, the Question of Intrinsic Electric Fields, Core/Shell Assemblies, Hollow Spheres and Reorganization of Denatured Collagen , 1999 .

[35]  J. García‐Ruiz,et al.  Supersaturation patterns in counter-diffusion crystallisation methods followed by Mach–Zehnder interferometry , 1999 .

[36]  M. Iijima,et al.  Lengthwise and oriented growth of octacalcium phosphate crystal in polyacrylamide gel in a model system of tooth enamel apatite formation , 1998 .

[37]  M. Epple,et al.  Biomimetic Crystallization of Apatite in a Porous Polymer Matrix , 1998 .

[38]  Y. Kuboki,et al.  Effect of some physico-chemical properties of matrix on lengthwise and oriented growth of octacalcium phosphate crystal. , 1998, Connective tissue research.

[39]  A. Boskey,et al.  Effects of Bone CS-Proteoglycans, DS-Decorin, and DS-Biglycan on Hydroxyapatite Formation in a Gelatin Gel , 1997, Calcified Tissue International.

[40]  A. Boskey,et al.  Matrix Vesicles Promote Mineralization in a Gelatin Gel , 1997, Calcified Tissue International.

[41]  R. Kniep,et al.  Biomimetic Growth and Self‐Assembly of Fluorapatite Aggregates by Diffusion into Denatured Collagen Matrices , 1996 .

[42]  Taitelbaum,et al.  Motion of the reaction front in the A+B-->C reaction-diffusion system. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  P. Hauschka,et al.  Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. , 1996, The Biochemical journal.

[44]  Y. Nodasaka,et al.  Electrophoretic Gels of Dentin Matrix Proteins as Diffusion Media for in vitro Mineralization , 1996, Journal of dental research.

[45]  Z. Koza The long-time behavior of initially separated A+B→0 reaction-diffusion systems with arbitrary diffusion constants , 1996, cond-mat/9601072.

[46]  G. Hunter,et al.  Determination of the hydroxyapatite-nucleating region of bone sialoprotein. , 1996, Connective tissue research.

[47]  Cornell,et al.  Dynamic multiscaling of the reaction-diffusion front for mA+nB-->0. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  G. Hunter,et al.  Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. , 1994, The Biochemical journal.

[49]  G. Hunter,et al.  Nucleation of hydroxyapatite by bone sialoprotein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[50]  A. Boskey,et al.  Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. , 1993, Bone and mineral.

[51]  Cornell,et al.  Steady-state reaction-diffusion front scaling for mA+nB--> , 1993, Physical review letters.

[52]  A. Boskey,et al.  Studies of matrix vesicle-induced mineralization in a gelatin gel. , 1992, Bone and mineral.

[53]  R. Kopelman,et al.  Space-and time-resolved diffusion-limited binary reaction kinetics in capillaries: experimental observation of segregation, anomalous exponents, and depletion zone , 1991 .

[54]  Cornell,et al.  Role of fluctuations for inhomogeneous reaction-diffusion phenomena. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[55]  L. Fernández-Díaz,et al.  Spatial and evolutionary aspects of nucleation in diffusing-reacting systems , 1991 .

[56]  G. Mandel,et al.  Calcium pyrophosphate crystal deposition: a kinetic study using a type I collagen gel model. , 1990, Scanning microscopy.

[57]  A. Boskey Hydroxyapatite formation in a dynamic collagen gel system: effects of type I collagen, lipids, and proteoglycans , 1989 .

[58]  A. Boskey,et al.  The effects of noncollagenous matrix proteins on hydroxyapatite formation and proliferation in a collagen gel system. , 1989, Connective tissue research.

[59]  Rácz,et al.  Properties of the reaction front in an A+B-->C type reaction-diffusion process. , 1988, Physical review. A, General physics.

[60]  G. Mandel,et al.  Calcium pyrophosphate crystal deposition in model systems. , 1988, Rheumatic diseases clinics of North America.

[61]  G. Mandel,et al.  Calcium pyrophosphate crystal deposition: the effect of monosodium urate and apatite crystals in a kinetic study using a gelatin matrix model. , 1988, Scanning microscopy.

[62]  G. Mandel,et al.  Calcium pyrophosphate crystal deposition: the effect of soluble iron in a kinetic study using a gelatin matrix model. , 1988 .

[63]  Heinz K. Henisch,et al.  Crystals in gels and Liesegang rings , 1988 .

[64]  David J. Young,et al.  Diffusion in the Condensed State , 1988 .

[65]  Jay D. Miller,et al.  Calcium pyrophosphate crystal deposition disease: Preparation and characterization of crystals , 1988 .

[66]  K. Pritzker,et al.  Hydroxyapatite formation in collagen, gelatin, and agarose gels. , 1986, Collagen and related research.

[67]  M. Grynpas,et al.  Inhibition of hydroxyapatite formation in collagen gels by chondroitin sulphate. , 1985, The Biochemical journal.

[68]  G. Mandel,et al.  Calcium pyrophosphate crystal deposition. An in vitro study using a gelatin matrix model. , 1984, Arthritis and rheumatism.

[69]  R. Young,et al.  Introduction to Polymers , 1983 .

[70]  M. Glimcher,et al.  Recent studies of bone mineral: Is the amorphous calcium phosphate theory valid? , 1981 .

[71]  G. H. Nancollas,et al.  Crystallization of calcium phosphates. A constant composition study , 1980 .

[72]  P. van Duijn,et al.  The dynamics of calcium phosphate precipitation studied with a new polyacrylamide steady state matrix-model: influence of pyrophosphate collagen and chondroitin sulfate. , 1980, Connective tissue research.

[73]  G. H. Nancollas,et al.  Mineralization Kinetics: A Constant Composition Approach , 1978, Science.

[74]  D. Srzić,et al.  Precipitation in Gels under Conditions of Double Diffusion: Critical Concentrations and Solubility Products of Salts , 1976 .

[75]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[76]  H. Henisch,et al.  Growth Rate and Defect Structure of Gel‐Grown Crystals , 1965 .

[77]  A. Veis The Macromolecular Chemistry of Gelatin , 1964 .

[78]  Paul Shewmon,et al.  Diffusion in Solids , 2016 .

[79]  Frank S. Ham,et al.  Theory of diffusion-limited precipitation , 1958 .

[80]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .