An analysis of Gray versus binary encoding in genetic search

This paper employs a Markov model to study the relative performance of binary and Gray coding in genetic algorithms. The results indicate that while there is not much difference between the two for all possible functions, Gray coding does not necessarily improve performance for functions which have fewer local optima in the Gray representation than in binary.

[1]  José Carlos Príncipe,et al.  A Markov Chain Framework for the Simple Genetic Algorithm , 1993, Evolutionary Computation.

[2]  L. Darrell Whitley,et al.  Bit Representations with a Twist , 1997, ICGA.

[3]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[4]  Larry J. Eshelman The CHC Adaptive Search Algo-rithm , 1991 .

[5]  Kalyanmoy Deb,et al.  Analysis of Selection Algorithms: A Markov Chain Approach , 1996, Evolutionary Computation.

[6]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[7]  E. Gilbert Gray codes and paths on the N-cube , 1958 .

[8]  D. WhitleyComputer A Free Lunch Proof for Gray versus Binary Encodings , 1999 .

[9]  RudolphGünter Finite Markov chain results in evolutionary computation , 1998 .

[10]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[11]  David E. Goldberg,et al.  Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.

[12]  Michael D. Vose,et al.  Modeling Simple Genetic Algorithms , 1992, FOGA.

[13]  J. David Schaffer,et al.  Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms , 1988, ML.

[14]  David E. Goldberg,et al.  Genetic Algorithm Difficulty and the Modality of Fitness Landscapes , 1994, FOGA.

[15]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[16]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[17]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[18]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[19]  Michael D. Vose,et al.  Modeling genetic algorithms with Markov chains , 1992, Annals of Mathematics and Artificial Intelligence.

[20]  Joe Suzuki A Markov Chain Analysis on A Genetic Algorithm , 1993, ICGA.

[21]  A. E. Eiben,et al.  Global Convergence of Genetic Algorithms: A Markov Chain Analysis , 1990, PPSN.

[22]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[23]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[24]  John G. Kemeny,et al.  Finite Markov Chains. , 1960 .

[25]  XI FachbereichInformatik Finite Markov Chain Results in Evolutionary Computation: a Tour D'horizon , 1998 .

[26]  L. Booker Foundations of genetic algorithms. 2: L. Darrell Whitley (Ed.), Morgan Kaufmann, San Mateo, CA, 1993, ISBN 1-55860-263-1, 322 pp., US$45.95 , 1994 .