Option Pricing With Application of Levy Processes and the Minimal Variance Equivalent Martingale Measure Under Uncertainty

This paper is dedicated to European option pricing under assumption that the underlying asset follows a geometric Levy process. The log-price of a primary financial instrument has the form of a sum of a drift component, a Brownian component, and a linear combination of time-homogeneous Poisson processes, modeling jumps in price. In our approach we apply stochastic analysis, especially the change of probability measure techniques, as well as fuzzy sets theory. To obtain the option valuation formulas we use the minimal variance equivalent martingale measure, which requires an advanced analysis of transformation of Levy characteristic triplets. We obtain analytical option valuation expressions in crisp case. Moreover, we assume that some model parameters are described in an imprecise way and therefore we use their fuzzy counterparts. Applying fuzzy arithmetic, we take into account various types of uncertainty on the market. As a result, we obtain the analytical option pricing formulas with fuzzy parameters. We also propose a method of automatized decision making, which utilizes the fuzzy valuation formulas. Apart from the general pricing expressions, we provide numerical examples to illustrate our theoretical results.

[1]  Esfandiar Eslami,et al.  PRICING STOCK OPTIONS USING FUZZY SETS , 2007 .

[2]  Xiandong Wang,et al.  Reload option pricing in fuzzy framework , 2014 .

[3]  宮原 孝夫 Option pricing in incomplete markets : modeling based on geometric Lévy processes and minimal entropy martingale measures , 2012 .

[4]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[5]  A. M. Gil-Lafuente Fuzzy Logic in Financial Analysis , 2005 .

[6]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[7]  Piotr Nowak,et al.  ON JACOD–GRIGELIONIS CHARACTERISTICS FOR HILBERT SPACE VALUED SEMIMARTINGALES , 2002 .

[8]  Mark H. A. Davis Mathematics of Financial Markets , 2001 .

[9]  Wei-guo Zhang,et al.  The double exponential jump diffusion model for pricing European options under fuzzy environments , 2012 .

[10]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[11]  Michal Pawlowski,et al.  Modelling Spot Prices on the Polish Energy Market , 2014, IEEE Conf. on Intelligent Systems.

[12]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[13]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[14]  A. Thavaneswaran,et al.  Option valuation model with adaptive fuzzy numbers , 2007, Comput. Math. Appl..

[15]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[16]  M. Pistorius,et al.  A transform approach to compute prices and Greeks of barrier options driven by a class of Lévy processes , 2008, 0812.3128.

[17]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[18]  Aleksandar Mijatovic,et al.  Approximating Levy Processes with a View to Option Pricing , 2009 .

[19]  Maciej Romaniuk,et al.  Application of Levy processes and Esscher transformed martingale measures for option pricing in fuzzy framework , 2014, J. Comput. Appl. Math..

[20]  M. Musiela,et al.  Martingale Methods in Financial Modelling , 2002 .

[21]  Sheng-hong Li,et al.  European option pricing model in a stochastic and fuzzy environment , 2013 .

[22]  Weijun Xu,et al.  The Fuzzy Jump-Diffusion Model to Pricing European Vulnerable Options , 2013 .

[23]  Y. Miyahara Option Pricing in Incomplete Markets:Modeling Based on Geometric Lévy Processes and Minimal Entropy Martingale Measures , 2011 .

[24]  S. Boyarchenko,et al.  User's Guide to Pricing Double Barrier Options. Part I: Kou's Model and Generalizations , 2008 .

[25]  Hsien-Chung Wu,et al.  Pricing European options based on the fuzzy pattern of Black-Scholes formula , 2004, Comput. Oper. Res..

[26]  Konstantinos A. Chrysafis,et al.  On theoretical pricing of options with fuzzy estimators , 2009 .

[27]  Hsien-Chung Wu,et al.  Optimality conditions for linear programming problems with fuzzy coefficients , 2008, Comput. Math. Appl..

[28]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[29]  Maciej Romaniuk,et al.  Catastrophe bond pricing for the two-factor Vasicek interest rate model with automatized fuzzy decision making , 2017, Soft Comput..

[30]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[31]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[32]  Zdenek Zmeskal,et al.  Generalised soft binomial American real option pricing model (fuzzy-stochastic approach) , 2010, Eur. J. Oper. Res..

[33]  Yuji Yoshida,et al.  The valuation of European options in uncertain environment , 2003, Eur. J. Oper. Res..

[34]  A. Shiryaev Essentials of stochastic finance , 1999 .

[35]  Steven Kou,et al.  Option Pricing Under a Double Exponential Jump Diffusion Model , 2001, Manag. Sci..

[36]  S. Asmussen,et al.  Russian and American put options under exponential phase-type Lévy models , 2004 .

[37]  Krzysztof Piasecki On Imprecise Investment Recommendations , 2014 .

[38]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[39]  Nan Chen,et al.  Pricing double-barrier options under a flexible jump diffusion model , 2009, Oper. Res. Lett..

[40]  Hsien-Chung Wu,et al.  Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options , 2007, Appl. Math. Comput..

[41]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[42]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[43]  Steven Kou,et al.  Option Pricing Under a Mixed-Exponential Jump Diffusion Model , 2011, Manag. Sci..

[44]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .