The 2005 coral‐bleaching event Roatan (Honduras): Use of pseudoinvariant features (PIFs) in satellite assessments

Radiometric normalisation is a necessary precursor to detecting coral‐bleaching from a time series of imagery. Using IKONOS and QuickBird, the pseudo‐invariant‐feature (PIF) approach was assessed, and found that small subsets and landbased PIFs lead to erroneous normalisation. In comparison, favourable results were achieved by using benthic sand and deep water subsets, coupled to a sun‐deglint process. Furthermore, it was found the more traditional strategy of ‘difference imaging’ to be compromised by slight spatial alignment errors between image sets. Our alternative approach, based on spectral radiance, ably discerned significant brightening of areas of seafloor populated by dense stands of Acropora, corroborating the occurrence of a documented bleaching event.

[1]  R. Aronson,et al.  Ecosystems: Coral bleach-out in Belize , 2000, Nature.

[2]  J. Jaubert,et al.  Spectral discrimination of coral mortality states following a severe bleaching event , 2000 .

[3]  S. Purkis,et al.  Enhanced detection of the coral Acropora cervicornis from satellite imagery using a textural operator , 2006 .

[4]  Christopher D. Elvidge,et al.  Satellite observation of Keppel Islands (Great Barrier Reef) 2002 coral bleaching using IKONOS data , 2003, Coral Reefs.

[5]  William J. Volchok,et al.  Radiometric scene normalization using pseudoinvariant features , 1988 .

[6]  S. Andréfouët,et al.  Change detection in coral reef communities using Ikonos satellite sensor imagery and historic aerial photographs , 2003 .

[7]  B. Willis,et al.  Seasonal and local spatial patterns in the upper thermal limits of corals on the inshore Central Great Barrier Reef , 1999, Coral Reefs.

[8]  Raymond L. Hayes,et al.  GLOBAL CORAL REEF BLEACHING AND SEA SURFACE TEMPERATURE TRENDS FROM SATELLITE-DERIVED HOTSPOT ANALYSIS , 2005 .

[9]  C. Menza,et al.  Ecology of Coral Reefs in the US Virgin Islands , 2008 .

[10]  T. Malthus,et al.  The empirical line method for the atmospheric correction of IKONOS imagery , 2003 .

[11]  J. Cihlar,et al.  Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection , 2002 .

[12]  Masayuki Tamura,et al.  Detection limits of coral reef bleaching by satellite remote sensing: Simulation and data analysis , 2004 .

[13]  Eugenio R. Mendez,et al.  Multiple scattering on coral skeletons enhances light absorption by symbiotic algae , 2005 .

[14]  R. Salm,et al.  Coral reef resilience and resistance to bleaching , 2005 .

[15]  R. Aronson,et al.  The potential listing of Acropora species under the US Endangered Species Act. , 2004, Marine pollution bulletin.

[16]  B. Riegl,et al.  Coral reefs of the USA , 2008 .

[17]  S. Purkis,et al.  Unexpectedly high cover of Acropora cervicornis on offshore reefs in Roatán (Honduras) , 2005, Coral Reefs.

[18]  S. Andréfouët,et al.  Choosing the appropriate spatial resolution for monitoring coral bleaching events using remote sensing , 2002, Coral Reefs.

[19]  Kendall L. Carder,et al.  Change detection in shallow coral reef environments using Landsat 7 ETM+ data , 2001 .

[20]  C. Woodcock,et al.  The status of agricultural lands in Egypt: The use of multitemporal NDVI features derived from landsat TM☆ , 1996 .

[21]  Chuanmin Hu,et al.  Detection of changes in coral reef communities using Landsat-5 TM and Landsat-7 ETM+ data , 2003 .

[22]  Samuel J. Purkis,et al.  Spatial and temporal dynamics of Arabian Gulf coral assemblages quantified from remote-sensing and in situ monitoring data , 2005 .

[23]  Marvin E. Bauer,et al.  Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features , 1994, IEEE Trans. Geosci. Remote. Sens..

[24]  J. Kennedy,et al.  Improved Analyses of Changes and Uncertainties in Sea Surface Temperature Measured In Situ since the Mid-Nineteenth Century: The HadSST2 Dataset , 2006 .

[25]  Ellsworth F. LeDrew,et al.  Spectral Discrimination of Healthy and Non-Healthy Corals Based on Cluster Analysis, Principal Components Analysis, and Derivative Spectroscopy , 1998 .

[26]  Serge Andréfouët,et al.  Spectral reflectance of coral reef bottom-types worldwide and implications for coral reef remote sensing , 2003 .

[27]  John D. Hedley,et al.  Technical note: Simple and robust removal of sun glint for mapping shallow‐water benthos , 2005 .

[28]  S. Andréfouët,et al.  Revisiting coral reef connectivity , 2002, Coral Reefs.

[29]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[30]  Wei Li,et al.  Spectral Signatures of Coral Reefs: Features from Space , 2001 .

[31]  J. Jackson,et al.  SILICICLASTIC-CARBONATE TRANSITIONS ALONG SHELF TRANSECTS THROUGH THE CAYOS COCHINOS ARCHIPELAGO, HONDURAS , 1998 .

[32]  Chris D. Clark,et al.  Coral reef habitat mapping: how much detail can remote sensing provide? , 1997 .

[33]  William J. Skirving,et al.  A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions , 2004, Coral Reefs.