Frequency tracking and parameter estimation for robust quantum state estimation

In this paper we consider the problem of tracking the state of a quantum system via a continuous weak measurement. If the system Hamiltonian is known precisely, this merely requires integrating the appropriate stochastic master equation. However, even a small error in the assumed Hamiltonian can render this approach useless. The natural answer to this problem is to include the parameters of the Hamiltonian as part of the estimation problem, and the full Bayesian solution to this task provides a state estimate that is robust against uncertainties. However, this approach requires considerable computational overhead. Here we consider a single qubit in which the Hamiltonian contains a single unknown parameter. We show that classical frequency estimation techniques greatly reduce the computational overhead associated with Bayesian estimation and provide accurate estimates for the qubit frequency.

[1]  Todd A. Brun,et al.  A simple model of quantum trajectories , 2002 .

[2]  H. M. Wiseman,et al.  Reconsidering rapid qubit purification by feedback , 2006, quant-ph/0603062.

[3]  A. Jordan,et al.  Qubit feedback and control with kicked quantum nondemolition measurements: A quantum Bayesian analysis , 2006, cond-mat/0606676.

[4]  Mostafa Kaveh,et al.  The statistical performance of the MUSIC and the minimum-norm algorithms in resolving plane waves in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[5]  The Zeno effect: measurement versus decoherence , 1994 .

[6]  Kurt Jacobs,et al.  Rapid-state purification protocols for a Cooper pair box , 2007 .

[7]  Kurt Jacobs How to project qubits faster using quantum feedback , 2003 .

[8]  T. Wei,et al.  Mixed-state sensitivity of several quantum-information benchmarks (6 pages) , 2004, quant-ph/0407172.

[9]  Kurt Jacobs,et al.  A straightforward introduction to continuous quantum measurement , 2006, quant-ph/0611067.

[10]  H. M. Wiseman,et al.  State and dynamical parameter estimation for open quantum systems , 2001 .

[11]  Xu Li-ping,et al.  Quantum Information Processing in Quantum Wires , 2004 .

[12]  N. Yamamoto Robust observer for uncertain linear quantum systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[13]  A. C. Doherty,et al.  Sensitivity optimization in quantum parameter estimation , 2001 .

[14]  Edwin Thompson Jaynes,et al.  Probability theory , 2003 .

[15]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[16]  Hideo Mabuchi,et al.  Quantum feedback control and classical control theory , 1999, quant-ph/9912107.

[17]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[18]  K. Jacobs,et al.  Rapid state-reduction of quantum systems using feedback control , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[19]  B. P. Lathi,et al.  Modern Digital and Analog Communication Systems , 1983 .

[20]  Mankei Tsang Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing , 2009 .

[21]  Barry G. Quinn,et al.  The Estimation and Tracking of Frequency , 2001 .

[22]  Barry G. Quinn,et al.  A fast efficient technique for the estimation of frequency , 1991 .

[23]  Bradley A. Chase,et al.  Single-shot parameter estimation via continuous quantum measurement , 2008, 0811.0601.

[24]  M. Tsang Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing , 2009, 0906.4133.

[25]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[26]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[27]  Ta-Hsin Li,et al.  Tracking abrupt frequency changes , 1998 .

[28]  H. M. Wiseman Quantum trajectories and quantum measurement theory , 1996 .

[29]  Mankei Tsang,et al.  Time-symmetric quantum theory of smoothing. , 2009, Physical review letters.

[30]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[31]  H. Kimura Proceedings of the 39th IEEE Conference on Decision and Control , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[32]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[33]  T. D. Clark,et al.  Guidance and control in a Josephson charge qubit , 2004, cond-mat/0408356.

[34]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[35]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[36]  M. R. James,et al.  Risk-sensitive optimal control of quantum systems , 2004 .

[37]  M. James,et al.  Stability, gain, and robustness in quantum feedback networks (13 pages) , 2005, quant-ph/0511140.

[38]  A C Doherty,et al.  Optimal unravellings for feedback control in linear quantum systems. , 2005, Physical review letters.

[39]  A. Doherty,et al.  Robust quantum parameter estimation: Coherent magnetometry with feedback (16 pages) , 2003, quant-ph/0309101.

[40]  Kurt Jacobs How Do Two Observers Pool Their Knowledge About a Quantum System? , 2002, Quantum Inf. Process..

[41]  T. Spiller,et al.  Thermal equilibrium in the quantum state diffusion picture , 1993 .