Using neuropharmacology to distinguish between excitatory and inhibitory movement detection mechanisms in the fly Calliphora erythrocephala

By combining neuropharmacology and electrophysiology, we tried to determine whether the main neuronal mechanism responsible for direction-selective motion detection in the fly is based on an excitatory or an inhibitory synaptic interaction. By blocking inhibitory interactions with picrotoxinin, an antagonist of the inhibitory neurotransmitter GABA, we could abolish most of the directional selectivity of a large-field movement-sensitive neuron (H1-cell) in the lobula plate of the blowfly Calliphora erythrocephala. These modifications are similar to changes observed in the optomotor response of the fruitfly Drosophila melanogaster after application of picrotoxinin (Bülthoff and Bülthoff 1987a, b). Assuming a simplified logical model, these results are compatible with inhibitory synaptic interactions at the level of the elementary movement detectors. The picrotoxinin-induced changes in direction selectivity are not due to modifications of the peripheral visual processing in the retina and lamina. This was shown by simultaneous recordings of the electroretinogram and the H1-cell. The latencies between drug injections into various parts of the brain and their first effects on the H1-cell suggest that the inhibitory mechanism for motion detection is located in the medulla rather than in the lobula plate.

[1]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[2]  N. Klemm Histochemistry of putative transmitter substances in the insect brain , 1976, Progress in Neurobiology.

[3]  T. Poggio,et al.  Considerations on models of movement detection , 1973, Kybernetik.

[4]  J. Ono,et al.  A pressure system for intracellular and extracellular ejections of picoliter volumes , 1977, Brain Research.

[5]  H. Autrum,et al.  Die Wirkung von Pikrotoxin und Nikotin auf das Retinogramm von Insekten , 1957 .

[6]  A. Sillito The effectiveness of bicuculline as an antagonist of GABA and visually evoked inhibition in the cat's striate cortex. , 1975, The Journal of physiology.

[7]  N. Franceschini,et al.  Motion detection in flies: Parametric control over ON-OFF pathways , 2004, Experimental Brain Research.

[8]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  Erich Buchner,et al.  Behavioural Analysis of Spatial Vision in Insects , 1984 .

[10]  Werner Reichardt,et al.  Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.

[11]  N. Franceschini,et al.  Les phénomènes de pseudopupille dans l'œil composé deDrosophila , 1971, Kybernetik.

[12]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[13]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[14]  John Thorson,et al.  Small-signal analysis of a visual reflex in the locust , 1966, Kybernetik.

[15]  H. Hydén,et al.  7-Aminobutyric Acid (GABA) Removal from the Synaptic Cleft: A Postsynaptic Event? , 1986, Cellular and Molecular Neurobiology.

[16]  M. Ariel,et al.  Effects of cholinergic drugs on receptive field properties of rabbit retinal ganglion cells , 1982, The Journal of physiology.

[17]  I. Bülthoff Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. 2. Optomotor blind H31 and lobula plate-less N684 visual mutants. , 1985 .

[19]  Jaroslav Král,et al.  A note on grammars with regular restrictions , 1973, Kybernetika.

[20]  Isabelle Bülthoff,et al.  Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 1984, Journal of Comparative Physiology A.

[21]  J. Benson,et al.  Responses to GABA by isolated insect neuronal somata: pharmacology and modulation by a benzodiazepine and a barbiturate , 1987, Brain Research.

[22]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[23]  E. Meyer,et al.  Insect optic lobe neurons identifiable with monoclonal antibodies to GABA , 2004, Histochemistry.

[24]  Robert D. DeVoe,et al.  Movement sensitivities of cells in the fly's medulla , 1980, Journal of comparative physiology.

[25]  Robert D. DeVoe,et al.  Intracellular responses from cells of the medulla of the fly, Calliphora erythrocephala , 1976, Biological Cybernetics.

[26]  K. R. Hengstenberg The Number and Structure of Giant Vertical Cells (VS) in the Lobula Plate of the Blowfly , 2022 .

[27]  M. Ariel,et al.  Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells , 1982, The Journal of physiology.

[28]  R. Olsen Drug interactions at the GABA receptor-ionophore complex. , 1982, Annual review of pharmacology and toxicology.

[29]  K. Hausen Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[30]  H. Biilthoff,et al.  GABA-antagonist inverts movement and object detection in flies , 1987 .

[31]  J. Caldwell,et al.  Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. , 1978, The Journal of physiology.