Energetic Perspective on Rapid Quenches in Quantum Annealing

There are well developed theoretical tools to analyse how quantum dynamics can solve computational problems by varying Hamiltonian parameters slowly, near the adiabatic limit. On the other hand, there are relatively few tools to understand the opposite limit of rapid quenches, as used in quantum annealing and (in the limit of infinitely rapid quenches) in quantum walks. In this paper, we develop several tools which are applicable in the rapid quench regime. Firstly, we analyse the energy expectation value of different elements of the Hamiltonian. From this, we show that monotonic quenches, where the strength of the problem Hamiltonian is consistently increased relative to fluctuation (driver) terms, will yield a better result on average than random guessing. Secondly, we develop methods to determine whether dynamics will occur locally under rapid quench Hamiltonians, and identify cases where a rapid quench will lead to a substantially improved solution. In particular, we find that a technique we refer to as "pre-annealing" can significantly improve the performance of quantum walks. We also show how these tools can provide efficient heuristic estimates for Hamiltonian parameters, a key requirement for practical application of quantum annealing.

[1]  H. Trotter On the product of semi-groups of operators , 1959 .

[2]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[3]  B. Derrida Random-Energy Model: Limit of a Family of Disordered Models , 1980 .

[4]  M. Suzuki,et al.  Improved Trotter-like formula , 1993 .

[5]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[6]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[7]  E. Farhi,et al.  Quantum computation and decision trees , 1997, quant-ph/9706062.

[8]  Fred L. Drake,et al.  The Python Language Reference Manual , 1999 .

[9]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[10]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[11]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[12]  Andrew M. Childs,et al.  Quantum search by measurement , 2002, quant-ph/0204013.

[13]  Andrew M. Childs,et al.  Spatial search by quantum walk , 2003, quant-ph/0306054.

[14]  G. Milburn,et al.  Continuous quantum error correction by cooling , 2005, quant-ph/0501038.

[15]  Edward Farhi,et al.  HOW TO MAKE THE QUANTUM ADIABATIC ALGORITHM FAIL , 2005 .

[16]  P. Shor,et al.  Error Correcting Codes For Adiabatic Quantum Computation , 2005, quant-ph/0512170.

[17]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[18]  M. Ruskai,et al.  Bounds for the adiabatic approximation with applications to quantum computation , 2006, quant-ph/0603175.

[19]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[20]  Sandy Irani,et al.  The Power of Quantum Systems on a Line , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[21]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[22]  Daniel A. Lidar,et al.  Adiabaticity in open quantum systems , 2007, 1508.05558.

[23]  Daniel A. Lidar,et al.  Towards fault tolerant adiabatic quantum computation. , 2007, Physical review letters.

[24]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[25]  Daniel A. Lidar,et al.  Adiabatic approximation with exponential accuracy for many-body systems and quantum computation , 2008, 0808.2697.

[26]  M. Amin Consistency of the adiabatic theorem. , 2008, Physical review letters.

[27]  Vicky Choi Different Adiabatic Quantum Optimization Algorithms for the NP-Complete Exact Cover and 3SAT Problems , 2010, ArXiv.

[28]  Vicky Choi,et al.  Adiabatic Quantum Algorithms for the NP-Complete Maximum-Weight Independent Set, Exact Cover and 3SAT Problems , 2010, ArXiv.

[29]  P. Høyer,et al.  Improved error bounds for the adiabatic approximation , 2011, 1103.4174.

[30]  Alán Aspuru-Guzik,et al.  A study of heuristic guesses for adiabatic quantum computation , 2008, Quantum Inf. Process..

[31]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[32]  Daniel A. Lidar,et al.  High-fidelity adiabatic quantum computation via dynamical decoupling , 2012, 1205.2725.

[33]  N. Wiebe,et al.  Improved error-scaling for adiabatic quantum evolutions , 2011, 1105.6268.

[34]  Daniel A. Lidar,et al.  Zeno effect for quantum computation and control. , 2011, Physical review letters.

[35]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[36]  Alan Crispin,et al.  Quantum Annealing Algorithm for Vehicle Scheduling , 2013, 2013 IEEE International Conference on Systems, Man, and Cybernetics.

[37]  Daniel A. Lidar,et al.  Adiabatic quantum optimization with the wrong Hamiltonian , 2013, 1310.0529.

[38]  M. W. Johnson,et al.  Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.

[39]  Kevin C. Young,et al.  Error suppression and error correction in adiabatic quantum computation: non-equilibrium dynamics , 2013, 1307.5892.

[40]  Pingxing Chen,et al.  An Alternative Approach to Construct the Initial Hamiltonian of the Adiabatic Quantum Computation , 2013 .

[41]  Cedric Yen-Yu Lin,et al.  Different Strategies for Optimization Using the Quantum Adiabatic Algorithm , 2014, 1401.7320.

[42]  Daniel A. Lidar,et al.  Error-corrected quantum annealing with hundreds of qubits , 2013, Nature Communications.

[43]  M. Marzec Portfolio Optimization: Applications in Quantum Computing , 2014 .

[44]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[45]  P. Zoller,et al.  A quantum annealing architecture with all-to-all connectivity from local interactions , 2015, Science Advances.

[46]  D. Venturelli,et al.  Quantum Annealing Implementation of Job-Shop Scheduling , 2015, 1506.08479.

[47]  Daniel A. Lidar,et al.  Quantum annealing correction for random Ising problems , 2014, 1408.4382.

[48]  Daniel A. Lidar,et al.  Tunneling and speedup in quantum optimization for permutation-symmetric problems , 2015, 1511.03910.

[49]  Daniel A. Lidar,et al.  Quantum annealing correction with minor embedding , 2015, 1507.02658.

[50]  Adam D. Bookatz,et al.  Error suppression in Hamiltonian-based quantum computation using energy penalties , 2014, 1407.1485.

[51]  Nicholas Chancellor,et al.  Modernizing quantum annealing using local searches , 2016, 1606.06833.

[52]  Stefan Zohren,et al.  Circuit design for multi-body interactions in superconducting quantum annealing systems with applications to a scalable architecture , 2016, 1603.09521.

[53]  J. Christopher Beck,et al.  A Hybrid Quantum-Classical Approach to Solving Scheduling Problems , 2016, SOCS.

[54]  Daniel A. Lidar,et al.  Nested quantum annealing correction , 2015, npj Quantum Information.

[55]  Andrea Rocchetto,et al.  Stabilizers as a design tool for new forms of the Lechner-Hauke-Zoller annealer , 2016, Science Advances.

[56]  P. Zoller,et al.  A transmon quantum annealer: decomposing many-body Ising constraints into pair interactions , 2016, 1604.02359.

[57]  Walter Vinci,et al.  Maximum-Entropy Inference with a Programmable Annealer , 2015, Scientific Reports.

[58]  Hartmut Neven,et al.  Optimizing Variational Quantum Algorithms using Pontryagin's Minimum Principle , 2016, ArXiv.

[59]  Thomas G. Wong,et al.  Irreconcilable difference between quantum walks and adiabatic quantum computing , 2016, 1603.05423.

[60]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[61]  S. C. Benjamin,et al.  A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph , 2016, Scientific Reports.

[62]  S. Knysh,et al.  Zero-temperature quantum annealing bottlenecks in the spin-glass phase , 2016, Nature Communications.

[63]  Daniel A. Lidar,et al.  Scalable effective temperature reduction for quantum annealers via nested quantum annealing correction , 2017, 1710.07871.

[64]  Tobias Stollenwerk,et al.  Flight Gate Assignment with a Quantum Annealer , 2018, QTOP@NetSys.

[65]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[66]  Leonardo Novo,et al.  Finding a marked node on any graph by continuous time quantum walk , 2018, Physical Review A.

[67]  Johnnie Gray,et al.  quimb: A python package for quantum information and many-body calculations , 2018, J. Open Source Softw..

[68]  K. B. Whaley,et al.  Stable quantum memories with limited measurement , 2017, Physical Review A.

[69]  Daniel A. Lidar,et al.  Dynamics of reverse annealing for the fully connected p -spin model , 2018, Physical Review A.

[70]  Daniel A. Lidar,et al.  Error reduction in quantum annealing using boundary cancellation: Only the end matters , 2018, Physical Review A.

[71]  Daniel A. Lidar,et al.  Adiabatic quantum computation , 2016, 1611.04471.

[72]  Daniel O'Malley An approach to quantum-computational hydrologic inverse analysis , 2018, Scientific Reports.

[73]  T. Graß Quantum Annealing with Longitudinal Bias Fields. , 2019, Physical review letters.

[74]  Dynamics of reverse annealing for the fully connected p -spin model , 2019, Physical Review A.

[75]  S. Zohren,et al.  Decoding quantum error correction with Ising model hardware , 2019, 1903.10254.

[76]  Davide Venturelli,et al.  Reverse quantum annealing approach to portfolio optimization problems , 2018, Quantum Machine Intelligence.

[77]  S. Bose,et al.  Quantum search with hybrid adiabatic–quantum-walk algorithms and realistic noise , 2017, Physical Review A.

[78]  Probing Mid-Band and Broad-Band Noise in Lower-Noise D-Wave 2000 Q Fabrication Stacks , 2019 .

[79]  Nicholas Chancellor,et al.  Finding spin glass ground states using quantum walks , 2019, New Journal of Physics.

[80]  M. M. Taddei,et al.  Error-run-time trade-off in the adiabatic approximation beyond scaling relations , 2019, Annals of Physics.

[81]  R. Orús,et al.  Forecasting financial crashes with quantum computing , 2018, Physical Review A.

[82]  M. Hastings Duality in Quantum Quenches and Classical Approximation Algorithms: Pretty Good or Very Bad , 2019, Quantum.

[83]  Daniel A. Lidar,et al.  Prospects for quantum enhancement with diabatic quantum annealing , 2020, Nature Reviews Physics.

[84]  K. B. Whaley,et al.  Continuous quantum error correction for evolution under time-dependent Hamiltonians , 2020, 2003.11248.

[85]  L. Brady,et al.  Optimal Protocols in Quantum Annealing and QAOA Problems , 2020, 2003.08952.

[86]  Rupak Biswas,et al.  Quantum Annealing Applied to De-Conflicting Optimal Trajectories for Air Traffic Management , 2017, IEEE Transactions on Intelligent Transportation Systems.