Roles of white matter in central nervous system pathophysiologies

The phylogenetic enlargement of cerebral cortex culminating in the human brain imposed greater communication needs that have been met by the massive expansion of WM (white matter). Damage to WM alters brain function, and numerous neurological diseases feature WM involvement. In the current review, we discuss the major features of WM, the contributions of WM compromise to brain pathophysiology, and some of the mechanisms mediating WM injury. We will emphasize the newly appreciated importance of neurotransmitter signalling in WM, particularly glutamate and ATP signalling, to understanding both normal and abnormal brain functions. A deeper understanding of the mechanisms leading to WM damage will generate much-needed insights for developing therapies for acute and chronic diseases with WM involvement.

[1]  D. Pitt,et al.  Multiple sclerosis: Altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage , 2001, Annals of neurology.

[2]  Thomas Möller,et al.  Anaerobic Function of CNS White Matter Declines with Age , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[3]  N. Uranova,et al.  Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium , 2004, Schizophrenia Research.

[4]  J. Alix,et al.  Glutamate receptor‐mediated ischemic injury of premyelinated central axons , 2009, Annals of neurology.

[5]  W. Gan,et al.  The P2Y12 receptor regulates microglial activation by extracellular nucleotides , 2006, Nature Neuroscience.

[6]  Amaia M. Arranz,et al.  P2X7 Receptor Blockade Prevents ATP Excitotoxicity in Oligodendrocytes and Ameliorates Experimental Autoimmune Encephalomyelitis , 2007, The Journal of Neuroscience.

[7]  M. Kukley,et al.  Vesicular glutamate release from axons in white matter , 2007, Nature Neuroscience.

[8]  Federico N. Soria,et al.  Increased expression of cystine/glutamate antiporter in multiple sclerosis , 2011, Journal of Neuroinflammation.

[9]  R. Douglas Fields,et al.  Control of Local Protein Synthesis and Initial Events in Myelination by Action Potentials , 2011, Science.

[10]  N. Maragakis,et al.  Reduction in expression of the astrocyte glutamate transporter, GLT1, worsens functional and histological outcomes following traumatic spinal cord injury , 2011, Glia.

[11]  A. Pérez-Samartín,et al.  P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia , 2012, Neurobiology of Disease.

[12]  L. Had‐Aissouni Toward a new role for plasma membrane sodium-dependent glutamate transporters of astrocytes: maintenance of antioxidant defenses beyond extracellular glutamate clearance , 2011, Amino Acids.

[13]  S. Skaper,et al.  The P2X7 purinergic receptor: from physiology to neurological disorders , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[14]  C. Brosnan,et al.  Exacerbation of Experimental Autoimmune Encephalomyelitis in P2X7R−/− Mice: Evidence for Loss of Apoptotic Activity in Lymphocytes1 , 2006, The Journal of Immunology.

[15]  Axons get excited to death , 2009, Annals of neurology.

[16]  C. Reid,et al.  The P2X7 Receptor Drives Microglial Activation and Proliferation: A Trophic Role for P2X7R Pore , 2009, The Journal of Neuroscience.

[17]  J. Ryu,et al.  Amyloid beta peptide-induced corpus callosum damage and glial activation in vivo. , 2003, Neuroreport.

[18]  C. Matute,et al.  Caspase-Dependent and Caspase-Independent Oligodendrocyte Death Mediated by AMPA and Kainate Receptors , 2003, The Journal of Neuroscience.

[19]  Hideyo Sato,et al.  The oxidative stress-inducible cystine/glutamate antiporter, system xc−: cystine supplier and beyond , 2011, Amino Acids.

[20]  W. Gan,et al.  ATP mediates rapid microglial response to local brain injury in vivo , 2005, Nature Neuroscience.

[21]  J. Ford,et al.  Schizophrenia, myelination, and delayed corollary discharges: a hypothesis. , 2012, Schizophrenia bulletin.

[22]  P. Stys,et al.  Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation. , 2010, Trends in molecular medicine.

[23]  C. Matute,et al.  Expression of glutamate transporters in rat optic nerve oligodendrocytes , 1999, The European journal of neuroscience.

[24]  T. Montine,et al.  White matter lesions defined by diffusion tensor imaging in older adults , 2011, Annals of neurology.

[25]  M. Hediger,et al.  Knockout of Glutamate Transporters Reveals a Major Role for Astroglial Transport in Excitotoxicity and Clearance of Glutamate , 1996, Neuron.

[26]  B. Trapp,et al.  Glutamate receptors on myelinated spinal cord axons: II. AMPA and GluR5 receptors , 2009, Annals of neurology.

[27]  R. Cunha,et al.  Presynaptic Modulation Controlling Neuronal Excitability and Epileptogenesis: Role of Kainate, Adenosine and Neuropeptide Y Receptors , 2003, Neurochemical Research.

[28]  D. Attwell,et al.  The role of pannexin hemichannels in the anoxic depolarization of hippocampal pyramidal cells , 2010, Brain : a journal of neurology.

[29]  H. Kettenmann,et al.  Purinergic signaling and microglia , 2006, Pflügers Archiv.

[30]  A. Dolphin,et al.  Vesicular apparatus, including functional calcium channels, are present in developing rodent optic nerve axons and are required for normal node of Ranvier formation , 2008, The Journal of physiology.

[31]  F. Kirchhoff,et al.  NMDA Receptors in Glia , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[32]  W. Bowers,et al.  Triple‐transgenic Alzheimer's disease mice exhibit region‐specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology , 2009, Glia.

[33]  D. W. Desmond Cognition and White Matter Lesions , 2002, Cerebrovascular Diseases.

[34]  Amaia M. Arranz,et al.  P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. , 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  C. Rose,et al.  K+-induced reversal of astrocyte glutamate uptake is limited by compensatory changes in intracellular Na+ , 1999, Neuroscience.

[36]  D. Attwell,et al.  Glutamatergic signaling in the brain's white matter , 2009, Neuroscience.

[37]  A. Pérez-Samartín,et al.  The link between excitotoxic oligodendroglial death and demyelinating diseases , 2001, Trends in Neurosciences.

[38]  F. Tempia,et al.  The GPR17 receptor in NG2 expressing cells: Focus on in vivocell maturation and participation in acute trauma and chronic damage , 2011, Glia.

[39]  R. Fields,et al.  Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. , 2002, Neuron.

[40]  Carlos Matute,et al.  Calcium dyshomeostasis in white matter pathology. , 2010, Cell calcium.

[41]  Pamela L. Follett,et al.  Glutamate Receptor-Mediated Oligodendrocyte Toxicity in Periventricular Leukomalacia: A Protective Role for Topiramate , 2004, The Journal of Neuroscience.

[42]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[43]  a.R.V. Neuroglia , 1956, Neurology.

[44]  W. Deng,et al.  Axon–glia synapses are highly vulnerable to white matter injury in the developing brain , 2012, Journal of neuroscience research.

[45]  G. Krissansen,et al.  Simultaneous neuroprotection and blockade of inflammation reverses autoimmune encephalomyelitis. , 2004, Brain : a journal of neurology.

[46]  G. Mealing,et al.  Novel Injury Mechanism in Anoxia and Trauma of Spinal Cord White Matter: Glutamate Release via Reverse Na+-dependent Glutamate Transport , 1999, The Journal of Neuroscience.

[47]  R. Fields,et al.  Nonsynaptic and nonvesicular ATP release from neurons and relevance to neuron-glia signaling. , 2011, Seminars in cell & developmental biology.

[48]  C. Matute,et al.  Neuroglial interactions mediated by purinergic signalling in the pathophysiology of CNS disorders. , 2011, Seminars in cell & developmental biology.

[49]  P. Stys White matter injury mechanisms. , 2004, Current molecular medicine.

[50]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[51]  S. Richard,et al.  Effects of the Noradrenergic System in Rat White Matter Exposed to Oxygen–Glucose Deprivation In Vitro , 2009, The Journal of Neuroscience.

[52]  Arcadi Navarro,et al.  Genome-wide scan of 500,000 single-nucleotide polymorphisms among responders and nonresponders to interferon beta therapy in multiple sclerosis. , 2009, Archives of neurology.

[53]  D. Pitt,et al.  Glutamate uptake by oligodendrocytes , 2003, Neurology.

[54]  H. Kinney,et al.  Diffuse Axonal Injury in Periventricular Leukomalacia as Determined by Apoptotic Marker Fractin , 2008, Pediatric Research.

[55]  Paul M Matthews,et al.  Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis. , 2010, Brain : a journal of neurology.

[56]  Todd A Fiacco,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S4 Hippocampal Short-and Long-term Plasticity Are Not Modulated by Astrocyte Ca 2+ Signaling , 2022 .

[57]  Qi-yue Deng,et al.  Downregulation of P2X7 receptor expression in rat oligodendrocyte precursor cells after hypoxia ischemia , 2009, Glia.

[58]  V. Gallo,et al.  The curious case of NG2 cells: transient trend or game changer? , 2010, ASN neuro.

[59]  Pamela L. Follett,et al.  Developmental regulation of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole‐propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex , 2006, The Journal of comparative neurology.

[60]  S. Goldman,et al.  P2X7 receptor inhibition improves recovery after spinal cord injury , 2004, Nature Medicine.

[61]  T. Möller,et al.  Rapid Ischemic Cell Death in Immature Oligodendrocytes: A Fatal Glutamate Release Feedback Loop , 2000, The Journal of Neuroscience.

[62]  S. Rivkees,et al.  Evidence for physiologically active axonal adenosine receptors in the rat corpus callosum , 1998, Brain Research.

[63]  Pamela L. Follett,et al.  Developmental regulation of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole‐propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex , 2006, The Journal of comparative neurology.

[64]  B. Fredholm,et al.  Adenosine signaling and function in glial cells , 2010, Cell Death and Differentiation.

[65]  Daniel Pelletier,et al.  Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. , 2005, Brain : a journal of neurology.

[66]  B. Ransom,et al.  White Matter Vulnerability to Ischemic Injury Increases with Age Because of Enhanced Excitotoxicity , 2008, The Journal of Neuroscience.

[67]  Dirk Dietrich,et al.  The Fate of Synaptic Input to NG2 Glial Cells: Neurons Specifically Downregulate Transmitter Release onto Differentiating Oligodendroglial Cells , 2010, The Journal of Neuroscience.

[68]  G. Burnstock,et al.  Purinoceptors on Neuroglia , 2009, Molecular Neurobiology.

[69]  F. Pedata,et al.  Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia. , 2009, Brain : a journal of neurology.

[70]  D. Pitt,et al.  Glutamate excitotoxicity in a model of multiple sclerosis , 2000, Nature Medicine.

[71]  L. de Haan,et al.  Diffusion tensor imaging in the early phase of schizophrenia: what have we learned? , 2010, Journal of psychiatric research.

[72]  F. Jensen,et al.  Role of metabotropic glutamate receptors in oligodendrocyte excitotoxicity and oxidative stress. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Peter K Stys,et al.  Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors , 2009, Annals of neurology.

[74]  P. Stys The axo-myelinic synapse , 2011, Trends in Neurosciences.

[75]  M Alda,et al.  Implications of the neuroprotective effects of lithium for the treatment of bipolar and neurodegenerative disorders. , 2003, Pharmacopsychiatry.

[76]  Philip D. Harvey,et al.  White matter changes in schizophrenia: evidence for myelin-related dysfunction. , 2003, Archives of general psychiatry.

[77]  C. Matute,et al.  System xc− and Glutamate Transporter Inhibition Mediates Microglial Toxicity to Oligodendrocytes1 , 2007, The Journal of Immunology.

[78]  C. Matute,et al.  Glutamate and Atp Signalling in White Matter Pathology , 2022 .

[79]  C. Matute,et al.  Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes , 2010, Cell Death and Disease.

[80]  L. Turski,et al.  Autoimmune encephalomyelitis ameliorated by AMPA antagonists , 2000, Nature Medicine.

[81]  Roger J. Thompson,et al.  Ischemia Opens Neuronal Gap Junction Hemichannels , 2006, Science.

[82]  A. Verkhratsky Physiology of neuronal–glial networking , 2010, Neurochemistry International.

[83]  G. Burnstock,et al.  Purinoceptors on Neuroglia , 2009, Molecular Neurobiology.

[84]  G. Perea,et al.  GLIA modulates synaptic transmission , 2010, Brain Research Reviews.

[85]  G. Burnstock,et al.  Purinergic signalling in neuron–glia interactions , 2006, Nature Reviews Neuroscience.

[86]  J. Volpe Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances , 2009, The Lancet Neurology.

[87]  L. Bronge,et al.  Magnetic resonance imaging in dementia: a study of brain white matter changes , 2002 .

[88]  M. Salter,et al.  NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury , 2005, Nature.

[89]  A. Pérez-Samartín,et al.  P2X7 receptors mediate ischemic damage to oligodendrocytes , 2009, Glia.

[90]  Mark Taylor,et al.  Glia as transmitter sources and sensors in health and disease , 2010, Neurochemistry International.

[91]  B. Ransom,et al.  New light on white matter. , 2003, Stroke.

[92]  A. Pérez-Samartín,et al.  Excitotoxic oligodendrocyte death and axonal damage induced by glutamate transporter inhibition , 2005, Glia.

[93]  J. Watters,et al.  Recent patents on novel P2X(7) receptor antagonists and their potential for reducing central nervous system inflammation. , 2010, Recent patents on CNS drug discovery.

[94]  A. Pérez-Samartín,et al.  Activation of Kainate Receptors Sensitizes Oligodendrocytes to Complement Attack , 2006, The Journal of Neuroscience.

[95]  G. Burnstock,et al.  Purinergic signalling: From normal behaviour to pathological brain function , 2011, Progress in Neurobiology.

[96]  Dwight E Bergles,et al.  Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus , 2004, Nature Neuroscience.

[97]  Shuxin Li,et al.  Mechanisms of Ionotropic Glutamate Receptor-Mediated Excitotoxicity in Isolated Spinal Cord White Matter , 2000, The Journal of Neuroscience.

[98]  S. Rivkees,et al.  Emerging concepts in periventricular white matter injury. , 2004, Seminars in perinatology.

[99]  M. Mattson,et al.  Presenilin-1 mutation sensitizes oligodendrocytes to glutamate and amyloid toxicities, and exacerbates white matter damage and memory impairment in mice , 2007, NeuroMolecular Medicine.

[100]  A. Butt ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. , 2011, Seminars in cell & developmental biology.

[101]  M. Barnett,et al.  Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion , 2004, Annals of neurology.

[102]  A. Pérez-Samartín,et al.  Excitotoxic damage to white matter , 2007, Journal of anatomy.

[103]  S G Waxman,et al.  Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[104]  B. Fredholm,et al.  International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. , 2001, Pharmacological reviews.

[105]  S G Waxman,et al.  Modulation of anoxic injury in CNS white matter by adenosine and interaction between adenosine and GABA. , 1994, Journal of neurophysiology.

[106]  K. Misulis,et al.  DEMYELINATING diseases. , 1952, Lancet.

[107]  R. Ravid,et al.  Increased expression and function of glutamate transporters in multiple sclerosis , 2006, Neurobiology of Disease.

[108]  J. Sepulcre,et al.  Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis , 2008, Journal of Neuroimmunology.

[109]  L. Steinman,et al.  Diverse Targets for Intervention during Inflammatory and Neurodegenerative Phases of Multiple Sclerosis , 2003, Neuron.

[110]  N. Danbolt Glutamate uptake , 2001, Progress in Neurobiology.

[111]  R. Fern,et al.  Conduction block and glial injury induced in developing central white matter by glycine, GABA, noradrenalin, or nicotine, studied in isolated neonatal rat optic nerve , 2009, Glia.

[112]  Pietro Mazzoni,et al.  The Behavioral Neurology of White Matter , 2003 .

[113]  D. Bergles,et al.  Vesicular release of glutamate from unmyelinated axons in white matter , 2007, Nature Neuroscience.

[114]  Peter K. Stys,et al.  General mechanisms of axonal damage and its prevention , 2005, Journal of the Neurological Sciences.

[115]  A. Butt,et al.  P2Y and P2X purinoceptor mediated Ca2+ signalling in glial cell pathology in the central nervous system. , 2002, European journal of pharmacology.

[116]  R. J. Dumont,et al.  Acute Spinal Cord Injury, Part I: Pathophysiologic Mechanisms , 2001, Clinical neuropharmacology.

[117]  N. Dale,et al.  Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus1 , 2007, Journal of neurochemistry.

[118]  S. Kirischuk,et al.  Activation of P2‐purinoreceptors triggered Ca2+ release from InsP3‐sensitive internal stores in mammalian oligodendrocytes. , 1995, The Journal of physiology.

[119]  F. Jensen,et al.  NMDA Receptor Blockade with Memantine Attenuates White Matter Injury in a Rat Model of Periventricular Leukomalacia , 2008, The Journal of Neuroscience.

[120]  R. Swanson,et al.  Astrocyte glutamate transport: Review of properties, regulation, and physiological functions , 2000, Glia.

[121]  J. Alberch,et al.  Bax and Calpain Mediate Excitotoxic Oligodendrocyte Death Induced by Activation of Both AMPA and Kainate Receptors , 2011, The Journal of Neuroscience.

[122]  T. Sejnowski,et al.  A universal scaling law between gray matter and white matter of cerebral cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[123]  J. Meldolesi,et al.  Astrocytes, from brain glue to communication elements: the revolution continues , 2005, Nature Reviews Neuroscience.

[124]  M. Goldberg,et al.  Amyloid-β Peptides Are Cytotoxic to Oligodendrocytes , 2001, The Journal of Neuroscience.

[125]  J. Garcìa,et al.  Cerebral white matter is highly vulnerable to ischemia. , 1996, Stroke.

[126]  B. Fredholm,et al.  A1 adenosine receptors mediate hypoxia-induced ventriculomegaly , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[127]  P. Somogyi,et al.  Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus , 2000, Nature.

[128]  T. Takano,et al.  Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spinal cord injury , 2009, Proceedings of the National Academy of Sciences.

[129]  Eve C. Johnstone,et al.  White Matter Density in Patients with Schizophrenia, Bipolar Disorder and Their Unaffected Relatives , 2005, Biological Psychiatry.

[130]  Mark E. Bastin,et al.  White Matter Tractography in Bipolar Disorder and Schizophrenia , 2008, Biological Psychiatry.

[131]  D. Attwell,et al.  NMDA receptors are expressed in oligodendrocytes and activated in ischaemia , 2005, Nature.

[132]  Norio Matsuki,et al.  Action-Potential Modulation During Axonal Conduction , 2011, Science.

[133]  B. Trapp,et al.  NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia , 2006, Nature.