Automated classification of glaucoma stages using higher order cumulant features

[1]  Jie Zhu,et al.  Shearlet-based texture feature extraction for classification of breast tumor in ultrasound image , 2013, Biomed. Signal Process. Control..

[2]  U. Rajendra Acharya,et al.  ECG beat classification using PCA, LDA, ICA and Discrete Wavelet Transform , 2013, Biomed. Signal Process. Control..

[3]  Yamunadevi Lakshmanan,et al.  Stereoacuity in mild, moderate and severe glaucoma , 2013, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[4]  Chua Kuang Chua,et al.  Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation , 2013, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[5]  Irene S. Karanasiou,et al.  Glaucoma risk assessment using a non-linear multivariable regression method , 2012, Comput. Methods Programs Biomed..

[6]  U. Rajendra Acharya,et al.  Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features , 2012, Knowl. Based Syst..

[7]  U. Acharya,et al.  A survey and comparative study on the instruments for glaucoma detection. , 2012, Medical engineering & physics.

[8]  U. Rajendra Acharya,et al.  Algorithms for the Automated Detection of Diabetic Retinopathy Using Digital Fundus Images: A Review , 2012, Journal of Medical Systems.

[9]  Chandan Chakraborty,et al.  Application of higher order cumulants to ECG signals for the cardiac health diagnosis , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[10]  U. Rajendra Acharya,et al.  Automatic Detection of Epileptic EEG Signals Using Higher Order cumulant Features , 2011, Int. J. Neural Syst..

[11]  U. Rajendra Acharya,et al.  Automated Diagnosis of Glaucoma Using Texture and Higher Order Spectra Features , 2011, IEEE Transactions on Information Technology in Biomedicine.

[12]  Chandan Chakraborty,et al.  Quantitative Analysis of Sub-Epithelial Connective Tissue Cell Population of Oral Submucous Fibrosis Using Support Vector Machine , 2011 .

[13]  U. Rajendra Acharya,et al.  Analysis and Automatic Identification of Sleep Stages Using Higher Order Spectra , 2010, Int. J. Neural Syst..

[14]  László G. Nyúl,et al.  Glaucoma risk index:  Automated glaucoma detection from color fundus images , 2010, Medical Image Anal..

[15]  Hsin-Yi Chen,et al.  Linear discriminant analysis and artificial neural network for glaucoma diagnosis using scanning laser polarimetry–variable cornea compensation measurements in Taiwan Chinese population , 2010, Graefe's Archive for Clinical and Experimental Ophthalmology.

[16]  László G. Nyúl,et al.  Retinal image analysis for automated glaucoma risk evaluation , 2009, International Symposium on Multispectral Image Processing and Pattern Recognition.

[17]  U. Rajendra Acharya,et al.  Automated Diagnosis of Glaucoma Using Digital Fundus Images , 2009, Journal of Medical Systems.

[18]  C. M. Lim,et al.  Computer-based detection of diabetes retinopathy stages using digital fundus images , 2009, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[19]  Joel S Schuman,et al.  Diagnostic tools for glaucoma detection and management. , 2008, Survey of ophthalmology.

[20]  Mercedes Argüello Casteleiro,et al.  Clinical practice guidelines: A case study of combining OWL-S, OWL, and SWRL , 2007, Knowl. Based Syst..

[21]  László G. Nyúl,et al.  Classifying Glaucoma with Image-Based Features from Fundus Photographs , 2007, DAGM-Symposium.

[22]  Juan Xu,et al.  Optic disk feature extraction via modified deformable model technique for glaucoma analysis , 2007, Pattern Recognit..

[23]  Juan Xu,et al.  Automated Optic Disk Boundary Detection by Modified Active Contour Model , 2007, IEEE Transactions on Biomedical Engineering.

[24]  Qiaoping Zhang,et al.  Accurate Centerline Detection and Line Width Estimation of Thick Lines Using the Radon Transform , 2007, IEEE Transactions on Image Processing.

[25]  J. Olson,et al.  Automatic detection of retinal anatomy to assist diabetic retinopathy screening , 2007, Physics in medicine and biology.

[26]  Anders Heijl,et al.  Trained Artificial Neural Network for Glaucoma Diagnosis Using Visual Field Data: A Comparison With Conventional Algorithms , 2007, Journal of glaucoma.

[27]  Archie Sharma,et al.  Automated depth analysis of optic nerve head from stereo fundus images , 2006 .

[28]  Ronald R. Yager,et al.  An extension of the naive Bayesian classifier , 2006, Inf. Sci..

[29]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[30]  Mounir Mesbah,et al.  Scoring of visual field measured through Humphrey perimetry: principal component varimax rotation followed by validated cluster analysis. , 2005, Investigative ophthalmology & visual science.

[31]  Heinrich Niemann,et al.  Automated segmentation of the optic nerve head for diagnosis of glaucoma , 2005, Medical Image Anal..

[32]  E. Pifer,et al.  Computer‐Aided Diagnosis , 2005 .

[33]  Ming Li,et al.  2D-LDA: A statistical linear discriminant analysis for image matrix , 2005, Pattern Recognit. Lett..

[34]  Enrico Grisan,et al.  Detection of optic disc in retinal images by means of a geometrical model of vessel structure , 2004, IEEE Transactions on Medical Imaging.

[35]  Thierry Blu,et al.  Linear interpolation revitalized , 2004, IEEE Transactions on Image Processing.

[36]  M. C. Leske,et al.  Prevalence of open-angle glaucoma among adults in the United States. , 2004, Archives of ophthalmology.

[37]  Michael H. Goldbaum,et al.  Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels , 2003, IEEE Transactions on Medical Imaging.

[38]  Mauro Vavassori,et al.  Detection of glaucomatous visual field changes using the Moorfields regression analysis of the Heidelberg retina tomograph. , 2003, American journal of ophthalmology.

[39]  Stuart L. Graham,et al.  Neural Network Model for Early Detection of Glaucoma using Multi-focal Visual Evoked Potential (M-VEP) , 2002 .

[40]  Langis Gagnon,et al.  Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching , 2001, IEEE Transactions on Medical Imaging.

[41]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[42]  A. Vingrys,et al.  The many faces of glaucomatous optic neuropathy , 2000, Clinical & experimental optometry.

[43]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[44]  D. Geiger,et al.  Learning Bayesian networks: The combination of knowledge and statistical data , 1994, Machine Learning.

[45]  C. L. Nikias,et al.  Signal processing with higher-order spectra , 1993, IEEE Signal Processing Magazine.

[46]  A. Sommer,et al.  Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. , 1991, Archives of ophthalmology.

[47]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.

[48]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[49]  William M. Lyle GLAUCOMA: A COLOUR MANUAL OF DIAGNOSIS AND TREATMENT , 1989 .

[50]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[51]  U. Rajendra Acharya,et al.  Wavelet-Based Energy Features for Glaucomatous Image Classification , 2012, IEEE Transactions on Information Technology in Biomedicine.

[52]  Robert N Weinreb,et al.  Clinical evaluation of the proper orthogonal decomposition framework for detecting glaucomatous changes in human subjects. , 2010, Investigative ophthalmology & visual science.

[53]  G. Lavergne,et al.  Biometric study of the disc cup in open-angle glaucoma , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[54]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[55]  J. Radon On the determination of functions from their integral values along certain manifolds , 1986, IEEE Transactions on Medical Imaging.

[56]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .