Transparent things: Cell fates and cell movements during early embryogenesis of zebrafish

Development of an animal embryo involves the coordination of cell divisions, a variety of inductive interactions and extensive cellular rearrangements. One of the biggest challenges in developmental biology is to explain the relationships between these processes and the mechanisms that regulate them. Teleost embryos provide an ideal subject for the study of these issues. Their optical lucidity combined with modern techniques for the marking and observation of individual living cells allow high resolution investigations of specific morphogenetic movements and the construction of detailed fate maps. In this review we describe the patterns of cell divisions, cellular movements and other morphogenetic events during zebrafish early development and discuss how these events relate to the formation of restricted lineages.

[1]  C. Kimmel,et al.  Cell cycles and clonal strings during formation of the zebrafish central nervous system. , 1994, Development.

[2]  W. Gilbert,et al.  A fate map for the first cleavages of the zebrafish , 1993, Nature.

[3]  C. Kimmel,et al.  Cell movements during epiboly and gastrulation in zebrafish. , 1990, Development.

[4]  C. Kimmel,et al.  Cell lineage of zebrafish blastomeres: II. Formation of the yolk syncytial layer , 1985 .

[5]  R. Keller,et al.  Vital dye mapping of the gastrula and neurula of Xenopus laevis: I. Prospective areas and morphogenetic movements of the superficial layer , 1976 .

[6]  R. Keller,et al.  Vital Dye Mapping of the Gastrula and Neurula of Xenopus Laevis , 1975 .

[7]  C. Kimmel,et al.  Cell lineages generating axial muscle in the zebrafish embryo , 1987, Nature.

[8]  Y. Hatada,et al.  A fate map of the epiblast of the early chick embryo. , 1994, Development.

[9]  J. Oppenheimer,et al.  Processes of Localization in Developing Fundulus. , 1935, Proceedings of the National Academy of Sciences of the United States of America.

[10]  C. Cretekos,et al.  Cell mixing during early epiboly in the zebrafish embryo. , 1995, Developmental genetics.

[11]  J. Trinkaus,et al.  On the convergent cell movements of gastrulation in Fundulus. , 1992, The Journal of experimental zoology.

[12]  G. Heinrich,et al.  The fates of the blastomeres of the 16-cell zebrafish embryo. , 1994, Development.

[13]  Jonathan M.W. Slack,et al.  From egg to embryo : regional specification in early development , 1991 .

[14]  J. Trinkaus,et al.  Contact relations, surface activity, and cortical microfilaments of marginal cells of the enveloping layer and of the yolk syncytial and yolk cytoplasmic layers of fundulus before and during epiboly. , 1978, The Journal of experimental zoology.

[15]  R. Ho,et al.  Commitment of cell fate in the early zebrafish embryo. , 1993, Science.

[16]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[17]  D. Kane,et al.  Domains of movement in the zebrafish gastrula , 1994 .

[18]  N. Hart,et al.  Fine structure of the chorion and site of sperm entry in the egg of Brachydanio , 1983 .

[19]  J. Trinkaus,et al.  Programmed endocytosis during epiboly of Fundulus heteroclitus , 1986 .

[20]  R. Keller,et al.  Rearrangement of enveloping layer cells without disruption of the epithelial permeability barrier as a factor in Fundulus epiboly. , 1987, Developmental biology.

[21]  D. Grunwald,et al.  Something's fishy here--rethinking cell movements and cell fate in the zebrafish embryo. , 1993, Trends in genetics : TIG.

[22]  J. Trinkaus,et al.  The midblastula transition, the YSL transition and the onset of gastrulation in Fundulus. , 1992, Development (Cambridge, England). Supplement.

[23]  M. Fishman,et al.  Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. , 1993, Development.

[24]  J. Slack From Egg to Embryo , 1983 .

[25]  U. Strähle,et al.  Ultraviolet irradiation impairs epiboly in zebrafish embryos: evidence for a microtubule-dependent mechanism of epiboly. , 1993, Development.

[26]  J. Oppenheimer The development of isolated blastoderms of Fundulus heteroclitus , 1936 .

[27]  A. Collazo,et al.  A Phylogenetic Perspective on Teleost Gastrulation , 1994, The American Naturalist.

[28]  A. Fainsod,et al.  The evolution of vertebrate gastrulation. , 1994, Development (Cambridge, England). Supplement.

[29]  W. W. Ballard A new fate map for Salmo gairdneri , 1973 .

[30]  D. Grunwald,et al.  Contribution of early cells to the fate map of the zebrafish gastrula. , 1994, Science.

[31]  C. Kimmel,et al.  Mitotic domains in the early embryo of the zebrafish , 1992, Nature.

[32]  J. Trinkaus,et al.  Microvilli and blebs as sources of reserve surface membrane during cell spreading. , 1976, Experimental cell research.

[33]  C. Kimmel,et al.  Cell lineage of zebrafish blastomeres. I. Cleavage pattern and cytoplasmic bridges between cells. , 1985, Developmental biology.

[34]  D. Grunwald,et al.  Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. , 1993, Development.

[35]  J. Shih,et al.  Cell motility driving mediolateral intercalation in explants of Xenopus laevis. , 1992, Development.

[36]  J. Trinkaus A study of the mechanism of epiboly in the egg of Fundulus heteroclitus , 1951 .

[37]  C. Kimmel,et al.  Origin and organization of the zebrafish fate map. , 1990, Development.

[38]  A. Wood,et al.  Teleost epibolie: a reassesment of deep cell movement in the germ ring. , 1988 .

[39]  C. Kimmel,et al.  Tissue-Specific Cell Lineages Originate in the Gastrula of the Zebrafish , 1986, Science.

[40]  M. Fishman,et al.  Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. , 1994, Development.

[41]  R. Keller,et al.  Cell rearrangement during gastrulation of Xenopus: direct observation of cultured explants. , 1991, Development.

[42]  N. Hart,et al.  The sperm entry site during fertilization of the zebrafish egg: Localization of actin , 1992, Molecular reproduction and development.

[43]  C. Kimmel,et al.  Cell lineage of zebrafish blastomeres. III. Clonal analyses of the blastula and gastrula stages. , 1985, Developmental biology.

[44]  W. Driever,et al.  Implications for dorsoventral axis determination from the zebrafish mutation janus , 1994, Nature.

[45]  K. K. Hisaoka,et al.  The normal developmental stages of the zebrafish, brachydanio rerio (hamilton‐buchanan) , 1958 .

[46]  R. Ho,et al.  The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system , 1991, Nature.

[47]  C. Kimmel,et al.  Indeterminate cell lineage of the zebrafish embryo. , 1987, Developmental biology.

[48]  J. Shih,et al.  Distribution of tissue progenitors within the shield region of the zebrafish gastrula. , 1995, Development.

[49]  T. Lentz,et al.  DIFFERENTIATION OF THE JUNCTIONAL COMPLEX OF SURFACE CELLS IN THE DEVELOPING FUNDULUS BLASTODERM , 1971, The Journal of cell biology.

[50]  R. Ho,et al.  Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation , 1993, Cell.

[51]  C. Kimmel,et al.  The zebrafish midblastula transition. , 1993, Development.

[52]  W. Driever,et al.  Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. , 1994, Development.

[53]  C. Kimmel,et al.  A mutation that changes cell movement and cell fate in the zebrafish embryo , 1989, Nature.