Structure and replication cycle of a virus infecting climate-modulating alga Emiliania huxleyi

The globally distributed marine alga Emiliania huxleyi produces reflective calcite disks (coccoliths) that increase the albedo of ocean water and thus reduce the heat absorption in the ocean, which cools the Earth’s climate. The population density of E. huxleyi is restricted by nucleocytoplasmic large DNA viruses, including E. huxleyi virus 201 (EhV-201). Despite the impact of E. huxleyi viruses on the climate, there is limited information about their structure and replication. Here we show that the dsDNA genome inside the EhV-201 virion is protected by an inner membrane, capsid, and outer membrane decorated with numerous transmembrane proteins. The virions are prone to deformation, and parts of their capsids deviate from the icosahedral arrangement. EhV-201 virions infect E. huxleyi by using their fivefold vertex to bind to a host cell and fuse the virus’s inner membrane with the plasma membrane. Whereas the replication of EhV-201 probably occurs in the nucleus, virions assemble in the cytoplasm at the surface of endoplasmic reticulum-derived membrane segments. Genome packaging initiates synchronously with the capsid assembly and completes through an aperture in the forming capsid. Upon the completion of genome packaging, the capsids change conformation, which enables them to acquire an outer membrane by budding into intracellular vesicles. EhV-201 infection induces a loss of surface protective layers from E. huxleyi cells, which allows the continuous release of virions by exocytosis. Our results provide insight into how EhVs bypass the surface protective layers of E. huxleyi and exploit the organelles of an infected cell for progeny assembly.

[1]  J. V. Van Etten,et al.  Near-atomic, non-icosahedrally averaged structure of giant virus Paramecium bursaria chlorella virus 1 , 2022, Nature Communications.

[2]  C. Abergel,et al.  Giant virus biology and diversity in the era of genome-resolved metagenomics , 2022, Nature Reviews Microbiology.

[3]  G. Taylor,et al.  Raman Microspectroscopy Goes Viral: Infection Dynamics in the Cosmopolitan Microalga, Emiliania huxleyi , 2021, Frontiers in Microbiology.

[4]  S. Scheres,et al.  New tools for automated cryo-EM single-particle analysis in RELION-4.0 , 2021, bioRxiv.

[5]  Heli A. M. Mönttinen,et al.  The genomes of nucleocytoplasmic large DNA viruses: viral evolution writ large , 2021, Microbial genomics.

[6]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[7]  M. Inamdar,et al.  Scaling relation between genome length and particle size of viruses provides insights into viral life history , 2021, iScience.

[8]  Kenta Okamoto,et al.  A novel capsid protein network allows the characteristic internal membrane structure of Marseilleviridae giant viruses , 2021, bioRxiv.

[9]  U. Riebesell,et al.  The Calcium Carbonate Shell of Emiliania huxleyi Provides Limited Protection Against Viral Infection , 2020, Frontiers in Marine Science.

[10]  Z. Porat,et al.  Visualizing active viral infection reveals diverse cell fates in synchronized algal bloom demise , 2020, Proceedings of the National Academy of Sciences.

[11]  Kristin N. Parent,et al.  Structural and Proteomic Characterization of the Initiation of Giant Virus Infection , 2020, Cell.

[12]  E. Koonin,et al.  Global Organization and Proposed Megataxonomy of the Virus World , 2020, Microbiology and Molecular Biology Reviews.

[13]  M. Beck,et al.  Benchmarking tomographic acquisition schemes for high-resolution structural biology , 2019, Nature Communications.

[14]  Benjamin A Himes,et al.  emClarity: Software for High Resolution Cryo-electron Tomography and Sub-tomogram Averaging , 2018, Nature Methods.

[15]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[16]  N. Smirnoff,et al.  An Extracellular Polysaccharide-Rich Organic Layer Contributes to Organization of the Coccosphere in Coccolithophores , 2018, Front. Mar. Sci..

[17]  Thorsten Wagner,et al.  SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM , 2019, Communications Biology.

[18]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[19]  David N. Mastronarde,et al.  Automated tilt series alignment and tomographic reconstruction in IMOD. , 2017, Journal of structural biology.

[20]  M. Rossmann,et al.  Structure of faustovirus, a large dsDNA virus , 2016, Proceedings of the National Academy of Sciences.

[21]  S. Ben-Dor,et al.  Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol. , 2016, The New phytologist.

[22]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[23]  J. V. Van Etten,et al.  Dynamic attachment of Chlorovirus PBCV-1 to Chlorella variabilis. , 2014, Virology.

[24]  S. Ben-Dor,et al.  Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms , 2014, The New phytologist.

[25]  B. La Scola,et al.  Acanthamoeba polyphaga mimivirus and other giant viruses: an open field to outstanding discoveries , 2014, Virology Journal.

[26]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[27]  K. Bidle,et al.  Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions. , 2014, Environmental microbiology.

[28]  A. Vardi,et al.  Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population , 2012, Proceedings of the National Academy of Sciences.

[29]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[30]  J. V. Van Etten,et al.  Three-dimensional structure and function of the Paramecium bursaria chlorella virus capsid , 2011, Proceedings of the National Academy of Sciences.

[31]  C. de Vargas,et al.  TRANSCRIPTOME ANALYSES REVEAL DIFFERENTIAL GENE EXPRESSION PATTERNS BETWEEN THE LIFE‐CYCLE STAGES OF EMILIANIA HUXLEYI (HAPTOPHYTA) AND REFLECT SPECIALIZATION TO DIFFERENT ECOLOGICAL NICHES 1 , 2011, Journal of phycology.

[32]  M. Rossmann,et al.  Structures of giant icosahedral eukaryotic dsDNA viruses. , 2011, Current opinion in virology.

[33]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[34]  N. Zauberman,et al.  Vaccinia-like cytoplasmic replication of the giant Mimivirus , 2010, Proceedings of the National Academy of Sciences.

[35]  M. Rossmann,et al.  Genome packaging in viruses. , 2010, Current opinion in structural biology.

[36]  K. Ryan,et al.  A unicellular algal virus, Emiliania huxleyi virus 86, exploits an animal-like infection strategy. , 2009, The Journal of general virology.

[37]  Alexander McPherson,et al.  Structural Studies of the Giant Mimivirus , 2009, PLoS biology.

[38]  Dominique Douguet,et al.  HELIQUEST: a web server to screen sequences with specific alpha-helical properties , 2008, Bioinform..

[39]  C. Ferraz,et al.  Life-Cycle and Genome of OtV5, a Large DNA Virus of the Pelagic Marine Unicellular Green Alga Ostreococcus tauri , 2008, PloS one.

[40]  Gongshe Han,et al.  Expression of a Novel Marine Viral Single-chain Serine Palmitoyltransferase and Construction of Yeast and Mammalian Single-chain Chimera* , 2006, Journal of Biological Chemistry.

[41]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[42]  J. Locker,et al.  Cytoplasmic Organization of POXvirus DNA Replication , 2005, Traffic.

[43]  B. Read,et al.  Analysis of Expressed Sequence Tags from Calcifying Cells of Marine Coccolithophorid (Emiliania huxleyi) , 2004, Marine Biotechnology.

[44]  D. Schroeder,et al.  Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel , 2002, Journal of the Marine Biological Association of the United Kingdom.

[45]  R. Sandaa,et al.  Microbial population dynamics and diversity during a bloom of the marine coccolithophorid Emiliania huxleyi (Haptophyta) , 2001 .

[46]  Xiaodong Yan,et al.  Structure and assembly of large lipid-containing dsDNA viruses , 2000, Nature Structural Biology.

[47]  P. M. Holligan,et al.  Optical impacts of oceanic coccolithophore blooms , 1999 .

[48]  Shi Zheng—li,et al.  Viruses and virus-like particles of eukaryotic algae , 1996 .

[49]  M. Heldal,et al.  Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea , 1996 .

[50]  M. S. Finch,et al.  A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic , 1993 .

[51]  Michael Knappertsbusch,et al.  A model system approach to biological climate forcing : The example of Emiliania huxleyi , 1993 .

[52]  J. V. Van Etten,et al.  Viruses and viruslike particles of eukaryotic algae , 1991, Microbiological reviews.

[53]  A. Steffan,et al.  Penetration and uncoating of frog virus 3 (FV3) in cultured rat Kupffer cells. , 1981, Virology.

[54]  K. Rybicka Simultaneous demonstration of glycogen and protein in glycosomes of cardiac tissue. , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[55]  S. R. Searle,et al.  Population Marginal Means in the Linear Model: An Alternative to Least Squares Means , 1980 .

[56]  K. Rybicka Glycosomes (protein-glycogen complex) in the canine heart , 1979, Virchows Archiv. B, Cell pathology including molecular pathology.

[57]  M. Moscarello,et al.  Extraction of glycoproteins during tissue preparation for electron microscopy , 1978, Journal of microscopy.

[58]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[59]  Yuejiao Xian,et al.  Current capsid assembly models of icosahedral nucleocytoviricota viruses. , 2020, Advances in virus research.

[60]  M echanism of calcification in the m arine alga Emiliania huxleyi , 2016 .

[61]  E. Mauceli,et al.  Viral Glycosphingolipids Induce Lytic Infection and Cell Death in Marine Phytoplankton , 2009 .

[62]  G. Bratbak,et al.  Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms , 1993 .