Polarization-dependent boundary modes in nonlinear mechanical metamaterials

[1]  V. Laude,et al.  Micro‐Scale Mechanical Metamaterial with a Controllable Transition in the Poisson's Ratio and Band Gap Formation , 2023, Advanced materials.

[2]  Yuanwen Gao,et al.  Steering of flexural wave propagation in tunable magnetorheological elastomers metasurface by modulating magnetic field , 2022, International Journal of Mechanical Sciences.

[3]  D. Skryabin,et al.  Soliton metacrystals: topology and chirality , 2022, 2208.09750.

[4]  Degang Zhao,et al.  Elastic topological interface states induced by incident angle , 2022, International Journal of Mechanical Sciences.

[5]  Phanisri P. Pratapa,et al.  Experimental realization of tunable Poisson’s ratio in deployable origami metamaterials , 2022, Extreme Mechanics Letters.

[6]  K. Bertoldi,et al.  Topological Solitons Make Metamaterials Crawl , 2022, Physical Review Applied.

[7]  Xilun Ding,et al.  Origami-based cellular mechanical metamaterials with tunable Poisson's ratio: Construction and analysis , 2021, International Journal of Mechanical Sciences.

[8]  R. Bao,et al.  Propagation of nonlinear waves in graded flexible metamaterials , 2021 .

[9]  C. Chen,et al.  Amplitude-dependent boundary modes in topological mechanical lattices , 2021 .

[10]  D. Rocklin,et al.  Conformal elasticity of mechanism-based metamaterials , 2021, Nature communications.

[11]  Weiqiu Chen,et al.  Broadband topological valley transport of elastic wave in reconfigurable phononic crystal plate , 2021 .

[12]  K. Bertoldi,et al.  Dynamics of mechanical metamaterials: A framework to connect phonons, nonlinear periodic waves and solitons , 2021 .

[13]  K. Bertoldi,et al.  Universally bistable shells with nonzero Gaussian curvature for two-way transition waves , 2021, Nature Communications.

[14]  S. Houri,et al.  Generation and Propagation of Topological Solitons in a Chain of Coupled Parametric-Micromechanical-Resonator Arrays , 2021, Physical Review Applied.

[15]  Jie Tang,et al.  Real-time tunable negative stiffness mechanical metamaterial , 2020 .

[16]  X. Ren,et al.  A Simple Methodology to Generate Metamaterials and Structures with Negative Poisson's Ratio , 2020, physica status solidi (b).

[17]  Lucia M. Korpas,et al.  Transition Waves and Formation of Domain Walls in Multistable Mechanical Metamaterials , 2020 .

[18]  K. Bertoldi,et al.  Pulse-driven robot: Motion via solitary waves , 2020, Science Advances.

[19]  Yuesheng Wang,et al.  Nonreciprocal transmission of nonlinear elastic wave metamaterials by incremental harmonic balance method , 2020 .

[20]  Vincent Tournat,et al.  Nonlinear transition waves in free-standing bistable chains , 2020 .

[21]  Zongliang Du,et al.  Optimal quantum valley Hall insulators by rationally engineering Berry curvature and band structure , 2020 .

[22]  K. Bertoldi,et al.  Guided transition waves in multistable mechanical metamaterials , 2020, Proceedings of the National Academy of Sciences.

[23]  G. Genin,et al.  Programmable and robust static topological solitons in mechanical metamaterials , 2019, Nature Communications.

[24]  Vincent Tournat,et al.  Focusing and Mode Separation of Elastic Vector Solitons in a 2D Soft Mechanical Metamaterial. , 2019, Physical review letters.

[25]  Vincent Tournat,et al.  Propagation of elastic solitons in chains of pre-deformed beams , 2019, New Journal of Physics.

[26]  Chengyang Mo,et al.  Cnoidal wave propagation in an elastic metamaterial. , 2019, Physical review. E.

[27]  E. Lerner,et al.  Non-reciprocal robotic metamaterials , 2019, Nature Communications.

[28]  Yujue Wang,et al.  Ordered deformation localization in cellular mechanical metamaterials , 2019, Journal of the Mechanics and Physics of Solids.

[29]  D. Tománek,et al.  Two-Dimensional Mechanical Metamaterials with Unusual Poisson Ratio Behavior , 2018, Physical Review Applied.

[30]  K. Bertoldi,et al.  Metamaterials with amplitude gaps for elastic solitons , 2018, Nature Communications.

[31]  Shmuel Katz,et al.  Solitary waves in a bistable lattice , 2018, Extreme Mechanics Letters.

[32]  Chenhui Ren,et al.  Mechanical Performance of Multidirectional Buckling-Based Negative Stiffness Metamaterials: An Analytical and Numerical Study , 2018, Materials.

[33]  Jinkyu Yang,et al.  Origami-based impact mitigation via rarefaction solitary wave creation , 2018, Science Advances.

[34]  K. Sun,et al.  Topological mechanical metamaterial with nonrectilinear constraints , 2018, Physical Review B.

[35]  Jianfeng Zang,et al.  Observation of elastic topological states in soft materials , 2018, Nature Communications.

[36]  T. Lubensky,et al.  Maxwell Lattices and Topological Mechanics , 2018 .

[37]  Xiaoming Mao,et al.  Fracturing of topological Maxwell lattices , 2018, New Journal of Physics.

[38]  Michael R. Haberman,et al.  Negative stiffness honeycombs as tunable elastic metamaterials , 2018 .

[39]  Jie Ren,et al.  Intrinsic spin of elastic waves , 2018, Proceedings of the National Academy of Sciences.

[40]  K. Bertoldi,et al.  Flexible mechanical metamaterials , 2017 .

[41]  Martin van Hecke,et al.  A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials , 2017, Nature Physics.

[42]  Guoliang Huang,et al.  A hybrid elastic metamaterial with negative mass density and tunable bending stiffness , 2017 .

[43]  J. R. Raney,et al.  Elastic Vector Solitons in Soft Architected Materials. , 2017, Physical review letters.

[44]  Ioannis Antoniadis,et al.  Enhanced acoustic insulation properties of composite metamaterials having embedded negative stiffness inclusions , 2017 .

[45]  D. Sounas,et al.  Static non-reciprocity in mechanical metamaterials , 2017, Nature.

[46]  Xiao Wang,et al.  Topology optimization of multi-material negative Poisson's ratio metamaterials using a reconciled level set method , 2017, Comput. Aided Des..

[47]  Fabrizio Scarpa,et al.  Double‐Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson's Ratio Properties , 2016, Advanced materials.

[48]  P. Sheng,et al.  Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials , 2016, Nature Communications.

[49]  B. Gadway,et al.  Observation of the topological soliton state in the Su–Schrieffer–Heeger model , 2016, Nature Communications.

[50]  Hsin Lin,et al.  Colloquium : Topological band theory , 2016, 1603.03576.

[51]  Shu Yang,et al.  Static and dynamic elastic properties of fractal-cut materials , 2016 .

[52]  Joseph N. Grima,et al.  Auxetic metamaterials exhibiting giant negative Poisson's ratios , 2015 .

[53]  Jinkyu Yang,et al.  Reentrant Origami-Based Metamaterials with Negative Poisson's Ratio and Bistability. , 2015, Physical review letters.

[54]  K. Bertoldi,et al.  Topological Phononic Crystals with One-Way Elastic Edge Waves. , 2015, Physical review letters.

[55]  M. Badreddine Assouar,et al.  Acoustic superfocusing by solid phononic crystals , 2014 .

[56]  Fernando Fraternali,et al.  Multiscale tunability of solitary wave dynamics in tensegrity metamaterials , 2014, 1409.7097.

[57]  B. Chen,et al.  Topological modes bound to dislocations in mechanical metamaterials , 2014, Nature Physics.

[58]  Vincenzo Vitelli,et al.  Nonlinear conduction via solitons in a topological mechanical insulator , 2014, Proceedings of the National Academy of Sciences.

[59]  Yuri S. Kivshar,et al.  Soliton generation in active nonlinear metamaterials , 2014 .

[60]  Jongmin Shim,et al.  3D Soft Metamaterials with Negative Poisson's Ratio , 2013, Advanced materials.

[61]  C. Kane,et al.  Topological boundary modes in isostatic lattices , 2013, Nature Physics.

[62]  Toyohiko Yatagai,et al.  Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave. , 2012, Optics letters.

[63]  R. C. Mitchell-Thomas,et al.  Gain control and diffraction-managed solitons in metamaterials , 2008 .

[64]  K. Javidan Interaction of topological solitons with defects: using a nontrivial metric , 2006, hep-th/0604062.

[65]  W. Zakrzewski,et al.  Scattering of topological solitons on holes and barriers , 2005, hep-th/0508032.

[66]  Mark R. Dennis,et al.  Polarization singularities in isotropic random vector waves , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[67]  M. Schoenberg,et al.  Anomalous polarization of elastic waves in transversely isotropic media , 1985 .

[68]  V. Nesterenko,et al.  Propagation of nonlinear compression pulses in granular media , 1984 .

[69]  A. Heeger,et al.  Soliton excitations in polyacetylene , 1980 .

[70]  G. Theocharis,et al.  Nonlinear Periodic Phononic Structures and Granular Crystals , 2013 .

[71]  T. Hayat,et al.  TOPOLOGICAL AND NON-TOPOLOGICAL SOLITON SOLUTIONS OF THE BRETHERTON EQUATION , 2012 .

[72]  A. Scott,et al.  A Nonlinear Klein-Gordon Equation , 1969 .