Molten salts as engineering fluids – A review

Molten salts constitute an important class of fluids for high temperature applications, like catalytic medium for coal gasification, molten salt oxidation of wastes or for latent or sensible heat storage. In particular, molten alkali nitrates are being used as heat transfer/storage fluids in concentrated solar power (CSP) technologies. These kind of technologies operate in ranges of temperature for which molten salts are particularly adequate, due to its main characteristics: stability at high temperatures, low vapor pressure, liquid state in a large range of temperatures, ability to dissolve many inorganic and organic compounds, viscosity generally low (as ions are mutually independent) and high heat capacity per unit volume. For the proper design and dimensioning of heat exchangers and other ancillary equipment’s it is decisive to have accurate data for the thermophysical properties of the employed fluids. This paper reviews the available data for the relevant properties that are important to a salt system for storage and heat transfer applications. Those are the melting point, density, viscosity, heat capacity and thermal conductivity. The chosen fluids were the pure molten lithium, sodium and potassium nitrates and relevant mixtures, like the solar salt (NaNO3/KNO3: 60/40), HITEC® (a ternary mixture of NaNO3, KNO3 and NaNO2) and some new quaternary mixtures. Review reveals that there are still large discrepancies between different sets of data for the same salt systems and that it is impossible currently to recommend reference data/measuring methods that can guide the reader for a selection of the best systems. The impact of that and the potential applications are briefly discussed. The reviewed fluids have great potential for actual and future applications in renewable processes for energy storage and transformation.

[1]  Peter Viebahn,et al.  The potential role of concentrated solar power (CSP) in Africa and Europe - A dynamic assessment of technology development, cost development and life cycle inventories until 2050 , 2011 .

[2]  R. W. Bradshaw,et al.  A review of the chemical and physical properties of molten alkali nitrate salts and their effect on materials used for solar central receivers , 1987 .

[3]  Michael Valenti The early days of incineration , 1995 .

[4]  T. Omotani,et al.  Thermal conductivity of molten salts, HTS and the lithium nitrate-sodium nitrate system, using a modified transient hot-wire method , 1984 .

[5]  Y. Iwadate,et al.  Density and heat capacity of molten NaNO2-KNO3 mixtures , 1982 .

[6]  H. A. Øye,et al.  Viscosity of Potassium Nitrate + Silver Nitrate Melt Mixtures , 1988 .

[7]  P. Cerisier,et al.  Measurement of thermal conductivity of molten salts in the range 100–500°C , 1984 .

[8]  Alexis B. Zavoico,et al.  Solar Power Tower Design Basis Document, Revision 0 , 2001 .

[9]  M. Kamimoto,et al.  Heat capacities and latent heats of LiNO3, NaNO3, and KNO3 , 1988 .

[10]  M. Valenti Storing solar energy in salt , 1995 .

[11]  A. Nagashima,et al.  The thermal conductivity of molten NaNO3 and KNO3 , 1991 .

[12]  K. Ichikawa,et al.  The Heat Capacities of Lithium, Sodium, Potassium, Rubidium, and Caesium Nitrates in the Solid and Liquid States , 1983 .

[13]  G. Janz,et al.  Molten Salts: Volume 4, Part 4 Mixed Halide Melts Electrical Conductance, Density, Viscosity, and Surface Tension Data , 1979 .

[14]  R. Tamme,et al.  Recent Progress in Alkali Nitrate/Nitrite Developments for Solar Thermal Power Applications , 2014 .

[15]  G. Janz,et al.  Melting-crystallization and premelting properties of sodium nitrate-potassium nitrate. Enthalpies and heat capacities , 1982 .

[16]  T. Bauer,et al.  Overview of molten salt storage systems and material development for solar thermal power plants , 2012 .

[17]  J. Richter,et al.  Molecular Dynamics Simulation of Molten Alkali Nitrates , 2001 .

[18]  Robert W. Carling,et al.  Heat capacities of NaNO3 and KNO3 from 350 to 800 K , 1983 .

[19]  Huili Zhang,et al.  Concentrated solar power plants: Review and design methodology , 2013 .

[20]  R. K. Shukla,et al.  Temperature dependent study of viscosity of KNO3–NaNO2–NaNO3 ternary molten salts , 2006 .

[21]  Luigi Torre,et al.  A New Phase Change Material Based on Potassium Nitrate with Silica and Alumina Nanoparticles for Thermal Energy Storage , 2015, Nanoscale Research Letters.

[22]  A. Nagashima,et al.  Determination of the viscosity of molten KNO3 with an oscillating-cup viscometer , 1980 .

[23]  Marcelle Gaune-Escard,et al.  Molten Salts: From Fundamentals to Applications , 2002 .

[24]  A. Thompson,et al.  Molecular Simulation of the Thermal and Transport Properties of Three Alkali Nitrate Salts , 2010 .

[25]  S. Report EFFECT OF COMPOSITION ON THE DENSITY OF MULTI-COMPONENT MOLTEN NITRATE SALTS , 2009 .

[26]  Alvin M. Weinberg Preface: Molten-Salt Reactors , 1970 .

[27]  T. Bauer,et al.  Thermal energy storage – overview and specific insight into nitrate salts for sensible and latent heat storage , 2015, Beilstein journal of nanotechnology.

[28]  D. A. Nissen Thermophysical properties of the equimolar mixture sodium nitrate-potassium nitrate from 300 to 600.degree.C , 1982 .

[29]  D. Kearney,et al.  Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field , 2003 .

[30]  Ş. Zuca,et al.  Viscosity Measurements on Molten Salts with an Oscillating Cup Viscometer: Viscosity of Molten KNO3 and NaCl , 1998 .

[31]  F. Pérez,et al.  Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants , 2014 .

[32]  B. Liu,et al.  Investigation on forced convective heat transfer of molten salts in circular tubes , 2012 .

[33]  James E. Pacheco,et al.  Development of a High-Temperature, Long-Shafted, Molten-Salt Pump for Power Tower Applications , 2001 .

[34]  Yulong Ding,et al.  Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures , 2015, Nanomaterials.

[35]  George J. Janz,et al.  Viscosity of molten lithium nitrate , 1978 .

[36]  G. L. Gardner,et al.  Molten salts: Volume 4, part 2, chlorides and mixtures—electrical conductance, density, viscosity, and surface tension data , 1974 .

[37]  Ma Chongfang,et al.  Experimental study of viscosity characteristics of hightemperature heat transfer molten salts , 2011 .

[38]  C. Bergman,et al.  Thermodynamic study of the condensed phases of NaNO3, KNO3 and CsNO3 and their transitions , 1995 .

[39]  Sandia Report,et al.  Corrosion Resistance of Stainless Steels During Thermal Cycling in Alkali Nitrate Molten Salts , 2001 .

[40]  Patrick G. Gaune Viscosity of potassium nitrate-sodium nitrite-sodium nitrate mixtures , 1982 .

[41]  Robert A. Taylor,et al.  Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems , 2012 .

[42]  Miguel Castilla,et al.  Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013 , 2015 .

[43]  Miguel J. Prieto,et al.  A Novel Modeling of Molten-Salt Heat Storage Systems in Thermal Solar Power Plants , 2014 .

[44]  T. Omotani,et al.  Measurement of the thermal conductivity of KNO3-NaNO3 mixtures using a transient hot-wire method with a liquid metal in a capillary probe , 1982 .

[45]  Xiaoxi Yang,et al.  The preparation and properties of multi-component molten salts , 2010 .

[46]  D. Lovering Molten Salt Technology , 1982 .

[47]  Piyush Sabharwall,et al.  Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties , 2010 .

[48]  F. Pérez,et al.  Thermal characterisation of an innovative quaternary molten nitrate mixture for energy storage in CSP plants , 2015 .

[49]  Ding Jing,et al.  The Simulation of the Steady-state Concentric Cylinder Method for Determining Thermal Conductivity of Sodium Nitrate☆ , 2014 .

[50]  Zhiying Ding,et al.  Thermodynamic modeling and experimental verification of eutectic point in the LiNO3–KNO3–Ca(NO3)2 ternary system , 2015, Journal of Thermal Analysis and Calorimetry.

[51]  Vittorio Ferraro,et al.  On the performance of CSP oil-cooled plants, with and without heat storage in tanks of molten salts , 2015 .

[52]  Xinhai Xu,et al.  Heat transfer fluids for concentrating solar power systems – A review , 2015 .

[53]  G. Janz,et al.  Molten Salts: Volume 5, Part 2. Additional Single and Multi-Component Salt Systems. Electrical Conductance, Density, Viscosity and Surface Tension Data , 1980 .

[54]  J. Petitet,et al.  Experimental determination of the thermal conductivity of molten pure salts and salt mixtures , 1985 .

[55]  M. Kenisarin High-temperature phase change materials for thermal energy storage , 2010 .

[56]  J. Pacio,et al.  Assessment of liquid metal technology status and research paths for their use as efficient heat transfer fluids in solar central receiver systems , 2013 .

[57]  Joseph Gabriel Cordaro,et al.  Multicomponent Molten Salt Mixtures Based on Nitrate/Nitrite Anions , 2011 .

[58]  S. Report Viscosity of Multi-component Molten Nitrate Salts—Liquidus to 200°C , 2010 .

[59]  R. Bradshaw Effect of composition on the density of multi-component molten nitrate salts. , 2009 .

[60]  Jinhui Li,et al.  Molten salt oxidation: a versatile and promising technology for the destruction of organic-containing wastes. , 2011, Chemosphere.

[61]  S. Cuesta-López,et al.  CSPonD Concentrated Solar Power on Demand FHR Fluoride Salt Cooled High-Temperature Reactor HR Homogenueus Reactor HTS Heat Transfer Fluid HTX Heat Exchanger IHX Intermediate Heat Exchanger , 2014 .

[62]  Xiaoxi Yang,et al.  Design of new molten salt thermal energy storage material for solar thermal power plant , 2013 .

[63]  G. Janz,et al.  Molten Salts: Volume 3 Nitrates, Nitrites, and Mixtures: Electrical Conductance, Density, Viscosity, and Surface Tension Data , 1972 .

[64]  G. Janz,et al.  Physical properties data compilations relevant to energy storage. II. Molten salts: data on single and multi-component salt systems , 1979 .

[65]  Ulf Herrmann,et al.  Engineering aspects of a molten salt heat transfer fluid in a trough solar field , 2004 .

[66]  Elisa Langa,et al.  Thermal Properties of Ionic Liquids and IoNanofluids of Imidazolium and Pyrrolidinium Liquids , 2010 .

[67]  C. A. N. Castro,et al.  Importance of Accurate Data on Viscosity and Thermal Conductivity in Molten Salts Applications , 2003 .

[68]  Tao Wang,et al.  Novel low melting point quaternary eutectic system for solar thermal energy storage , 2013 .

[69]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[70]  S. M. Sohel Murshed,et al.  Thermal Conductivity of [C4mim][(CF3SO2)2N] and [C2mim][EtSO4] and Their IoNanofluids with Carbon Nanotubes: Experiment and Theory , 2013 .

[71]  Alparslan Oztekin,et al.  Binary and Ternary Nitrate Solar Heat Transfer Fluids , 2013 .

[72]  T. Bauer,et al.  Material aspects of Solar Salt for sensible heat storage , 2013 .

[73]  Suresh V. Garimella,et al.  Thermal analysis of solar thermal energy storage in a molten-salt thermocline , 2010 .

[74]  G. Janz,et al.  Molten Salts: Volume 4, Part 3, Bromides and Mixtures; Iodides and mixtures—Electrical conductance, density, viscosity, and surface tension data , 1977 .