Gradient-based multiobjective optimization using a distance constraint technique and point replacement

This paper proposes techniques to improve the diversity of the searching points during the optimization process in an Aggregative Gradient-based Multiobjective Optimization (AGMO) method, so that well-distributed Pareto solutions are obtained. First to be discussed is a distance constraint technique, applied among searching points in the objective space when updating design variables, that maintains a minimum distance between the points. Next, a scheme is introduced that deals with updated points that violate the distance constraint, by deleting the offending points and introducing new points in areas of the objective space where searching points are sparsely distributed. Finally, the proposed method is applied to example problems to illustrate its effectiveness.

[1]  Andreas Stafylopatis,et al.  An artificial immune network for multiobjective optimization problems , 2014 .

[2]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[3]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[4]  Antonio J. Nebro,et al.  A survey of multi-objective metaheuristics applied to structural optimization , 2014 .

[5]  Gary G. Yen,et al.  Performance Metric Ensemble for Multiobjective Evolutionary Algorithms , 2014, IEEE Transactions on Evolutionary Computation.

[6]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[7]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[8]  K. Tai,et al.  Structural topology design optimization using Genetic Algorithms with a bit-array representation , 2005 .

[9]  Chaoyong Zhang,et al.  Multi-objective teaching–learning-based optimization algorithm for reducing carbon emissions and operation time in turning operations , 2015 .

[10]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[11]  G. Scott Duncan,et al.  Optimal Design of a Helmholtz Resonator With a Flexible End Plate , 2014 .

[12]  Jörg Fliege,et al.  Steepest descent methods for multicriteria optimization , 2000, Math. Methods Oper. Res..

[13]  Federico Rotini,et al.  Systematizing new value proposition through a TRIZ-based classification of functional features , 2011 .

[14]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[15]  Takayuki Yamada,et al.  Multiobjective optimization using an aggregative gradient-based method , 2015 .

[16]  Bin Xin,et al.  Decomposition-based multi-objective differential evolution particle swarm optimization for the design of a tubular permanent magnet linear synchronous motor , 2013 .

[17]  Kang Tai,et al.  Target-matching test problem for multiobjective topology optimization using genetic algorithms , 2007 .

[18]  Shigeru Obayashi,et al.  Multiobjective Design Study of a Flapping Wing Power Generator , 2008 .

[19]  Federico Rotini,et al.  Computer-aided embodiment design through the hybridization of mono objective optimizations for efficient innovation process , 2011, Comput. Ind..

[20]  Ponnuthurai Nagaratnam Suganthan,et al.  Two-lbests based multi-objective particle swarm optimizer , 2011 .

[21]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[22]  Shapour Azarm,et al.  Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set , 2001 .

[23]  Federico Rotini,et al.  Multi-objective topology optimization through GA-based hybridization of partial solutions , 2012, Engineering with Computers.

[24]  Francisco Luna,et al.  Distributed Multi-Objective Metaheuristics for Real-World Structural Optimization Problems , 2016, Comput. J..

[25]  M. Y. Wang,et al.  An enhanced genetic algorithm for structural topology optimization , 2006 .

[26]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[27]  Urmila M. Diwekar,et al.  An efficient sampling technique for off-line quality control , 1997 .

[28]  Günter Rudolph,et al.  Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions , 2006, PPSN.

[29]  Xin-She Yang,et al.  Flower pollination algorithm: A novel approach for multiobjective optimization , 2014, ArXiv.

[30]  Peter J. Fleming,et al.  Multiobjective genetic algorithms made easy: selection sharing and mating restriction , 1995 .

[31]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[32]  Jörg Fliege,et al.  Newton's Method for Multiobjective Optimization , 2009, SIAM J. Optim..

[33]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[34]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[35]  H. Rodrigues,et al.  Multiobjective topology optimization of structures using genetic algorithms with chromosome repairing , 2006 .

[36]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[37]  Shu-Kai S. Fan,et al.  A new multi-objective particle swarm optimizer using empirical movement and diversified search strategies , 2015 .

[38]  Akira Oyama,et al.  Data Mining of Pareto-Optimal Transonic Airfoil Shapes Using Proper Orthogonal Decomposition , 2009 .