Fuel-Optimal Multi-Impulse Orbit Transfer Using a Hybrid Optimization Method

For the <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula>-impulse transfer between two earth orbits, this paper introduces <inline-formula> <tex-math notation="LaTeX">$N - 1$ </tex-math></inline-formula> intermediate orbits to describe the orbit transfer scheme. The eccentricity vector of the intermediate orbits and the true anomalies corresponding to the impulsive points are chosen as the optimization variables. Based on the patched conic theory, candidate solution can be analytically derived, constraints are removed from the optimization model, and the original problem is converted to a parameter optimization problem. The only difficulty lies in the initialization because the number of optimization variables increases linearly with <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula>, which can be very large. This is settled by a hybrid optimization algorithm that comprises two searching methods. The problem is solved first by an improved particle swarm optimization method and, then, by an adaptive conjugate gradient method. The proposed method is adaptive to problems with any finite <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> and can calculate the optimal <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> in any transfer scenarios. The simulation validates the proposed method with some well-known cases and demonstrates its adaptation to <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula>.

[1]  Hongyu Zhou,et al.  Reentry guidance with constrained impact for hypersonic weapon by novel particle swarm optimization , 2018, Aerospace Science and Technology.

[2]  Damon Landau,et al.  Efficient Maneuver Placement for Automated Trajectory Design , 2018, Journal of Guidance, Control, and Dynamics.

[3]  Zheng Chen,et al.  Neighboring optimal control for open-time multiburn orbital transfers , 2018 .

[4]  Aude Rondepierre,et al.  Analytical Solutions for Impulsive Elliptic Out-of-Plane Rendezvous Problem via Primer Vector Theory , 2018, IEEE Transactions on Control Systems Technology.

[5]  Jing Deng,et al.  Long-Term Ship Speed Prediction for Intelligent Traffic Signaling , 2017, IEEE Transactions on Intelligent Transportation Systems.

[6]  MengChu Zhou,et al.  Dual-Objective Scheduling of Rescue Vehicles to Distinguish Forest Fires via Differential Evolution and Particle Swarm Optimization Combined Algorithm , 2016, IEEE Transactions on Intelligent Transportation Systems.

[7]  Phil Palmer,et al.  Geometric Approach to the Perpendicular Thrust Case for Trajectory Optimization , 2016 .

[8]  Ahmad Bani Younes,et al.  New Solutions for the Perturbed Lambert Problem Using Regularization and Picard Iteration , 2015 .

[9]  An algebraic approach to the minimum-cost multi-impulse orbit transfer problem , 2015, 1508.02243.

[10]  E. Lacruz,et al.  On non-coplanar Hohmann transfer using angles as parameters , 2015, 1509.05550.

[11]  Chris Sabol,et al.  Uncertain Lambert Problem , 2015 .

[12]  L. Casalino,et al.  Indirect Optimization of Three-Dimensional Multiple-Impulse Moon-to-Earth Transfers , 2014 .

[13]  Jinkui Liu Convergence properties of a class of nonlinear conjugate gradient methods , 2013, Comput. Oper. Res..

[14]  Hiroshi Yabe,et al.  Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization , 2013 .

[15]  Aldo Cipriano,et al.  Bus-Stop Control Strategies Based on Fuzzy Rules for the Operation of a Public Transport System , 2012, IEEE Transactions on Intelligent Transportation Systems.

[16]  Weijun Huang,et al.  Optimal Multi-Impulse Orbit Transfer Using Nonlinear Relative Motion Dynamics , 2012 .

[17]  Alessandro Antonio Quarta,et al.  Linear Systems Approach to Multiple-Impulse Trajectory Analysis via Regularization , 2010 .

[18]  C. McInnes,et al.  Accessibility of the resources of near Earth space using multi-impulse transfers , 2010 .

[19]  Analytical Study of the Primer Vector and Orbit Transfer Switching Function , 2010 .

[20]  Ping Lu,et al.  Rapid Optimization of Multiburn Rocket Trajectories Revisited , 2009 .

[21]  Daniel R. Adamo,et al.  Apollo 13 Trajectory Reconstruction via State Transition Matrices , 2008 .

[22]  Ping Lu,et al.  Rapid Optimal Multiburn Ascent Planning and Guidance , 2007 .

[23]  Angelo Miele,et al.  Guidance Trajectories for Spacecraft Rendezvous , 2007 .

[24]  D. Mortari,et al.  On the n-Impulse Orbit Transfer using Genetic Algorithms , 2007 .

[25]  William W. Hager,et al.  A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..

[26]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[27]  A. Prado,et al.  Study of Henon's orbit transfer problem using the Lambert algorithm , 1994 .

[28]  Ya-Xiang Yuan,et al.  A modified BFGS algorithm for unconstrained optimization , 1991 .

[29]  V. V. Ivashkin,et al.  Definition and analysis of properties of optimal three-impulse point-to-orbit transfers under time constraint , 1981 .

[30]  D. J. Jezewski,et al.  An optimal, analytic solution to the linear- gravity, constant-thrust trajectory problem , 1971 .

[31]  R. C. Blanchard,et al.  A note on Lambert's theorem. , 1966 .

[32]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..