Observed changes in dry-season water availability attributed to human-induced climate change

[1]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[2]  S. Seneviratne,et al.  Concurrent 2018 Hot Extremes Across Northern Hemisphere Due to Human‐Induced Climate Change , 2019, Earth's future.

[3]  A. P. Williams,et al.  Twentieth-century hydroclimate changes consistent with human influence , 2019, Nature.

[4]  V. Singh,et al.  Attribution of Global Soil Moisture Drying to Human Activities: A Quantitative Viewpoint , 2019, Geophysical Research Letters.

[5]  Vincent Humphrey,et al.  GRACE-REC: a reconstruction of climate-driven water storage changes over the last century , 2019, Earth System Science Data.

[6]  S. Seneviratne,et al.  Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage , 2018, Nature.

[7]  Nicolas Viovy,et al.  CRUNCEP Version 7 - Atmospheric Forcing Data for the Community Land Model , 2018 .

[8]  Reto Knutti,et al.  The Uneven Nature of Daily Precipitation and Its Change , 2017, Geophysical Research Letters.

[9]  S. Seneviratne,et al.  Simulated changes in aridity from the last glacial maximum to 4xCO2 , 2017 .

[10]  S. Seneviratne,et al.  Anthropogenic climate change detected in European renewable freshwater resources , 2017 .

[11]  Lukas Gudmundsson,et al.  Regional scaling of annual mean precipitation and water availability with global temperature change , 2017 .

[12]  P. Milly,et al.  Potential evapotranspiration and continental drying , 2016 .

[13]  Chris Derksen,et al.  LS3MIP (v1.0) Contribution to CMIP6: The Land Surface, Snow and Soil Moisture Model Intercomparison Project Aims, Setup and Expected Outcome. , 2016 .

[14]  Yi Y. Liu,et al.  The dry season intensity as a key driver of NPP trends , 2016 .

[15]  D. Lawrence,et al.  Revisiting trends in wetness and dryness in the presence of internal climate variability and water limitations over land , 2015 .

[16]  P. O’Gorman,et al.  The Response of Precipitation Minus Evapotranspiration to Climate Warming: Why the “Wet-Get-Wetter, Dry-Get-Drier” Scaling Does Not Hold over Land , 2015 .

[17]  Philippe Ciais,et al.  Projected strengthening of Amazonian dry season by constrained climate model simulations , 2015 .

[18]  M. Roderick,et al.  On the assessment of aridity with changes in atmospheric CO2 , 2015 .

[19]  S. Seneviratne,et al.  Global assessment of trends in wetting and drying over land , 2014 .

[20]  D. Lawrence,et al.  Less reliable water availability in the 21st century climate projections , 2014 .

[21]  K. Marvel,et al.  Identifying external influences on global precipitation , 2013, Proceedings of the National Academy of Sciences.

[22]  N. Dunstone,et al.  The influence of anthropogenic aerosol on multi-decadal variations of historical global climate , 2013 .

[23]  Christian Bernhofer,et al.  Evapotranspiration amplifies European summer drought , 2013 .

[24]  J. Chiang,et al.  Increase in the range between wet and dry season precipitation , 2013 .

[25]  H. Douville,et al.  Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration , 2012 .

[26]  S. Seneviratne,et al.  Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections , 2012 .

[27]  E. Wood,et al.  Little change in global drought over the past 60 years , 2012, Nature.

[28]  Tomas Vitvar,et al.  Swiss prealpine Rietholzbach research catchment and lysimeter: 32 year time series and 2003 drought event , 2012 .

[29]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[30]  A. Dai Drought under global warming: a review , 2011 .

[31]  S. Seneviratne,et al.  Recent decline in the global land evapotranspiration trend due to limited moisture supply , 2010, Nature.

[32]  S. Seneviratne,et al.  Investigating soil moisture-climate interactions in a changing climate: A review , 2010 .

[33]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[34]  Keith R. Briffa,et al.  Wet and dry summers in Europe since 1750: evidence of increasing drought , 2009 .

[35]  P. Ciais,et al.  Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends , 2007, Proceedings of the National Academy of Sciences.

[36]  G. Hegerl,et al.  Detection of human influence on twentieth-century precipitation trends , 2007, Nature.

[37]  B. Soden,et al.  Robust Responses of the Hydrological Cycle to Global Warming , 2006 .

[38]  S. Seneviratne,et al.  GRUN: An observations-based global gridded runoff dataset from 1902 to 2014 , 2019 .

[39]  R. Myneni,et al.  Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation , 2016 .

[40]  C. Field Managing the risks of extreme events and disasters to advance climate change adaption , 2012 .