Revision of the Li–Si Phase Diagram: Discovery and Single-Crystal X-ray Structure Determination of the High-Temperature Phase Li4.11Si
暂无分享,去创建一个
[1] Daniel Thomas,et al. Thermodynamic analysis of the Li–Si phase equilibria from 0 K to liquidus temperatures , 2013 .
[2] L. Wüllen,et al. Stabilizing the Phase Li15Si4 through Lithium–Aluminum Substitution in Li15–xAlxSi4 (0.4 < x < 0.8)—Single Crystal X-ray Structure Determination of Li15Si4 and Li14.37Al0.63Si4 , 2013 .
[3] J. Kortus,et al. The heat capacity and entropy of lithium silicides over the temperature range from (2 to 873) K , 2013 .
[4] J. Kortus,et al. Raman spectroscopic studies of LixSiy compounds , 2013 .
[5] T. Fässler,et al. Single Crystal Growth and Thermodynamic Stability of Li17Si4 , 2013 .
[6] Peter Gölitz,et al. Cover Picture: Champagne and Fireworks: Angewandte Chemie Celebrates Its Birthday (Angew. Chem. Int. Ed. 1/2013) , 2013 .
[7] J. Chotard,et al. Synthesis of Single-Phase LiSi by Ball-Milling: Electrochemical Behavior and Hydrogenation Properties , 2013 .
[8] A. Góral,et al. Enthalpy of formation of intermetallic compounds from the Li–Si system , 2012 .
[9] Martin Winter,et al. Structural characterization of the lithium silicides Li15Si4, Li13Si4, and Li7Si3 using solid state NMR. , 2012, Physical chemistry chemical physics : PCCP.
[10] M. Winter,et al. Structural and dynamic characterization of Li(12)Si(7) and Li(12)Ge(7) using solid state NMR. , 2012, Solid state nuclear magnetic resonance.
[11] P. Heitjans,et al. Li ion diffusion in the anode material Li12Si7: ultrafast quasi-1D diffusion and two distinct fast 3D jump processes separately revealed by 7Li NMR relaxometry. , 2011, Journal of the American Chemical Society.
[12] J. Tarascon,et al. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.
[13] Wei-Jun Zhang. A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .
[14] Vincent Chevrier,et al. First principles study of Li–Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations , 2010 .
[15] Rangeet Bhattacharyya,et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.
[16] H. Okamoto. Li-Si (Lithium-Silicon) , 2009 .
[17] Pengjian Zuo,et al. Geometric and electronic studies of Li15Si4 for silicon anode , 2008 .
[18] T. D. Hatchard,et al. In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .
[19] Mark N. Obrovac,et al. Structural changes in silicon anodes during lithium insertion/extraction , 2004 .
[20] Anton Kokalj,et al. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .
[21] N. Dudney,et al. Electrochemically-driven solid-state amorphization in lithium–metal anodes , 2003 .
[22] Paul F. McMillan,et al. Lithium monosilicide (LiSi), a low-dimensional silicon-based material prepared by high pressure synthesis: NMR and vibrational spectroscopy and electrical properties characterization , 2003 .
[23] Young-Il Jang,et al. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .
[24] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[25] I. Ansara,et al. Thermodynamic assessment of the Li-Si system , 1995 .
[26] Blöchl,et al. Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.
[27] G. Sextl,et al. High-pressure synthesis of LiSi : three-dimensional network of three-bonded Si- ions , 1993 .
[28] Jackson,et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.
[29] Wang,et al. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. , 1991, Physical review. B, Condensed matter.
[30] H. Okamoto. The Li-Si (Lithium-Silicon) system , 1990 .
[31] R. Nesper. Structure and chemical bonding in zintl-phases containing lithium , 1990 .
[32] Reinhard Nesper,et al. Li21Si5, a Zintl phase as well as a Hume-Rothery phase , 1987 .
[33] R. Nesper,et al. Li12Si7, eine Verbindung mit trigonal‐planarem Si4‐Cluster und planaren Si5‐Ringen , 1980 .
[34] Ram A. Sharma,et al. Thermodynamic Properties of the Lithium‐Silicon System , 1976 .
[35] S. Lai. Solid Lithium‐Silicon Electrode , 1976 .
[36] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[37] H. Schäfer,et al. Zur Kenntnis der Phase Li22Si5 , 1966 .
[38] H. Axel,et al. The Crystal Structure of Lithium Silicide Li2Si , 1965 .
[39] W. Klemm,et al. Volumeninkremente und Radien einiger einfach negativ gelandener Ionen , 1963 .
[40] E. Pell. Solubility of lithium in silicon , 1957 .
[41] W. Klemm,et al. Notiz über die Verbindungen zwischen Lithium und Silicium , 1955 .