Revision of the Li–Si Phase Diagram: Discovery and Single-Crystal X-ray Structure Determination of the High-Temperature Phase Li4.11Si

Silicon has been regarded as a promising anode material for future lithium-ion batteries, and Li–Si phases play an important role. A detailed reinvestigation of the Li-rich part of the binary Li–Si phase diagram revealed the existence of a new phase, Li4.106(2)Si (Li16.42Si4). Li16.42Si4 forms through the peritectic decomposition of the Li-richest phase Li17Si4 at 481–486 °C and was characterized by single-crystal X-ray diffraction (a = 4.5246(2) A, b = 21.944(1) A, c = 13.2001(6) A, space group Cmcm, Z = 16), differential scanning calorimetry, and theoretical calculations. Li16.42Si4 represents a high-temperature phase that is thermodynamically stable above ∼480 °C and decomposes peritectically at 618 ± 2 °C to Li13Si4 and a melt. Li16.42Si4 can be retained at room temperature. The structure consists of 3 and 10 different kinds of Si and Li atoms, respectively. Two Li positions show occupational disorder. Si atoms are well-separated from each other and have only Li atoms as nearest neighbors. This is sim...

[1]  Daniel Thomas,et al.  Thermodynamic analysis of the Li–Si phase equilibria from 0 K to liquidus temperatures , 2013 .

[2]  L. Wüllen,et al.  Stabilizing the Phase Li15Si4 through Lithium–Aluminum Substitution in Li15–xAlxSi4 (0.4 < x < 0.8)—Single Crystal X-ray Structure Determination of Li15Si4 and Li14.37Al0.63Si4 , 2013 .

[3]  J. Kortus,et al.  The heat capacity and entropy of lithium silicides over the temperature range from (2 to 873) K , 2013 .

[4]  J. Kortus,et al.  Raman spectroscopic studies of LixSiy compounds , 2013 .

[5]  T. Fässler,et al.  Single Crystal Growth and Thermodynamic Stability of Li17Si4 , 2013 .

[6]  Peter Gölitz,et al.  Cover Picture: Champagne and Fireworks: Angewandte Chemie Celebrates Its Birthday (Angew. Chem. Int. Ed. 1/2013) , 2013 .

[7]  J. Chotard,et al.  Synthesis of Single-Phase LiSi by Ball-Milling: Electrochemical Behavior and Hydrogenation Properties , 2013 .

[8]  A. Góral,et al.  Enthalpy of formation of intermetallic compounds from the Li–Si system , 2012 .

[9]  Martin Winter,et al.  Structural characterization of the lithium silicides Li15Si4, Li13Si4, and Li7Si3 using solid state NMR. , 2012, Physical chemistry chemical physics : PCCP.

[10]  M. Winter,et al.  Structural and dynamic characterization of Li(12)Si(7) and Li(12)Ge(7) using solid state NMR. , 2012, Solid state nuclear magnetic resonance.

[11]  P. Heitjans,et al.  Li ion diffusion in the anode material Li12Si7: ultrafast quasi-1D diffusion and two distinct fast 3D jump processes separately revealed by 7Li NMR relaxometry. , 2011, Journal of the American Chemical Society.

[12]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[13]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[14]  Vincent Chevrier,et al.  First principles study of Li–Si crystalline phases: Charge transfer, electronic structure, and lattice vibrations , 2010 .

[15]  Rangeet Bhattacharyya,et al.  Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. , 2009, Journal of the American Chemical Society.

[16]  H. Okamoto Li-Si (Lithium-Silicon) , 2009 .

[17]  Pengjian Zuo,et al.  Geometric and electronic studies of Li15Si4 for silicon anode , 2008 .

[18]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[19]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[20]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[21]  N. Dudney,et al.  Electrochemically-driven solid-state amorphization in lithium–metal anodes , 2003 .

[22]  Paul F. McMillan,et al.  Lithium monosilicide (LiSi), a low-dimensional silicon-based material prepared by high pressure synthesis: NMR and vibrational spectroscopy and electrical properties characterization , 2003 .

[23]  Young-Il Jang,et al.  Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage , 2003 .

[24]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[25]  I. Ansara,et al.  Thermodynamic assessment of the Li-Si system , 1995 .

[26]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[27]  G. Sextl,et al.  High-pressure synthesis of LiSi : three-dimensional network of three-bonded Si- ions , 1993 .

[28]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[29]  Wang,et al.  Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. , 1991, Physical review. B, Condensed matter.

[30]  H. Okamoto The Li-Si (Lithium-Silicon) system , 1990 .

[31]  R. Nesper Structure and chemical bonding in zintl-phases containing lithium , 1990 .

[32]  Reinhard Nesper,et al.  Li21Si5, a Zintl phase as well as a Hume-Rothery phase , 1987 .

[33]  R. Nesper,et al.  Li12Si7, eine Verbindung mit trigonal‐planarem Si4‐Cluster und planaren Si5‐Ringen , 1980 .

[34]  Ram A. Sharma,et al.  Thermodynamic Properties of the Lithium‐Silicon System , 1976 .

[35]  S. Lai Solid Lithium‐Silicon Electrode , 1976 .

[36]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[37]  H. Schäfer,et al.  Zur Kenntnis der Phase Li22Si5 , 1966 .

[38]  H. Axel,et al.  The Crystal Structure of Lithium Silicide Li2Si , 1965 .

[39]  W. Klemm,et al.  Volumeninkremente und Radien einiger einfach negativ gelandener Ionen , 1963 .

[40]  E. Pell Solubility of lithium in silicon , 1957 .

[41]  W. Klemm,et al.  Notiz über die Verbindungen zwischen Lithium und Silicium , 1955 .