An extract of Artemisia dracunculus L. enhances insulin receptor signaling and modulates gene expression in skeletal muscle in KK-A(y) mice.

[1]  D. Ribnicky,et al.  Regulation of insulin action by an extract of Artemisia dracunculus L. in primary human skeletal muscle culture: A proteomics approach , 2010, Phytotherapy research : PTR.

[2]  W. Cefalu,et al.  Modulation of Skeletal Muscle Insulin Signaling With Chronic Caloric Restriction in Cynomolgus Monkeys , 2009, Diabetes.

[3]  I. Raskin,et al.  Improved absorption and bioactivity of active compounds from an anti-diabetic extract of Artemisia dracunculus L. , 2009, International journal of pharmaceutics.

[4]  P. Sarafidis,et al.  The controversial effects of thiazolidinediones on cardiovascular morbidity and mortality. , 2009, International journal of cardiology.

[5]  I. Raskin,et al.  A natural history of botanical therapeutics. , 2008, Metabolism: clinical and experimental.

[6]  P. Brantley,et al.  Botanicals and cardiometabolic risk: positioning science to address the hype. , 2008, Metabolism: Clinical and Experimental.

[7]  A. Zuberi Strategies for assessment of botanical action on metabolic syndrome in the mouse and evidence for a genotype-specific effect of Russian tarragon in the regulation of insulin sensitivity. , 2008, Metabolism: clinical and experimental.

[8]  I. Raskin,et al.  Bioactives of Artemisia dracunculus L enhance cellular insulin signaling in primary human skeletal muscle culture. , 2008, Metabolism: clinical and experimental.

[9]  I. Raskin,et al.  Polyphenolic compounds from Artemisia dracunculus L. inhibit PEPCK gene expression and gluconeogenesis in an H4IIE hepatoma cell line. , 2007, American journal of physiology. Endocrinology and metabolism.

[10]  H. Beck-Nielsen,et al.  Altered basal and insulin-stimulated phosphotyrosine phosphatase (PTPase) activity in skeletal muscle from NIDDM patients compared with control subjects , 1996, Diabetologia.

[11]  I. Raskin,et al.  Antihyperglycemic activity of Tarralin, an ethanolic extract of Artemisia dracunculus L. , 2006, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[12]  I. Raskin,et al.  Bioassay-guided isolation of aldose reductase inhibitors from Artemisia dracunculus. , 2006, Phytochemistry.

[13]  W. Cefalu,et al.  Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats. , 2006, The Journal of nutrition.

[14]  M. Tremblay,et al.  Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: from diabetes, obesity to cell cycle, and cancer. , 2005, Biochimica et biophysica acta.

[15]  M. Riddle Glycemic management of type 2 diabetes: an emerging strategy with oral agents, insulins, and combinations. , 2005, Endocrinology and metabolism clinics of North America.

[16]  A. Bysar,et al.  Traditional dietary adjuncts for the treatment of diabetes mellitus , 2005 .

[17]  S. Grundy,et al.  Obesity, metabolic syndrome, and cardiovascular disease. , 2004, The Journal of clinical endocrinology and metabolism.

[18]  R. Turner,et al.  Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man , 1985, Diabetologia.

[19]  B. Cha,et al.  Metabolic Syndrome and Cardiovascular Disease , 2003 .

[20]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[21]  B. Goldstein Protein-tyrosine phosphatases: emerging targets for therapeutic intervention in type 2 diabetes and related states of insulin resistance. , 2002, The Journal of clinical endocrinology and metabolism.

[22]  B. Goldstein,et al.  Protein-tyrosine phosphatase 1B (PTP1B): a novel therapeutic target for type 2 diabetes mellitus, obesity and related states of insulin resistance. , 2001, Current drug targets. Immune, endocrine and metabolic disorders.

[23]  A. Ciechanover,et al.  Modes of regulation of ubiquitin‐mediated protein degradation , 2000, Journal of cellular physiology.

[24]  W. Baumeister,et al.  The 26S proteasome: a molecular machine designed for controlled proteolysis. , 1999, Annual review of biochemistry.

[25]  Aaron Ciechanover,et al.  The ubiquitin–proteasome pathway: on protein death and cell life , 1998, The EMBO journal.

[26]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. DeFronzo,et al.  Metformin: A review of its metabolic effects , 1998 .

[28]  S. Haffner Impaired Glucose Tolerance, Insulin Resistance and Cardiovascular Disease , 1997, Diabetic medicine : a journal of the British Diabetic Association.

[29]  G. Dohm,et al.  Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. , 1997, The Journal of clinical investigation.

[30]  R. Henry,et al.  Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase 1B protein content are associated with insulin action and resistance. , 1994, The Journal of clinical investigation.

[31]  A. Reddi,et al.  Hereditary diabetes in the KK mouse: an overview. , 1988, Advances in experimental medicine and biology.

[32]  Sugiura Mamoru,et al.  A new colorimetric method for determination of serum glucose. , 1977 .

[33]  K. Hirano,et al.  A new colorimetric method for determination of serum glucose. , 1977, Clinica chimica acta; international journal of clinical chemistry.