Avian influenza virus exhibits distinct evolutionary dynamics in wild birds and poultry

[1]  D. Stallknecht,et al.  Adaptive Evolution and Environmental Durability Jointly Structure Phylodynamic Patterns in Avian Influenza Viruses , 2014, PLoS biology.

[2]  Mathieu Fourment,et al.  Novel non-parametric models to estimate evolutionary rates and divergence times from heterochronous sequence data , 2014, BMC Evolutionary Biology.

[3]  E. Holmes,et al.  Analyses of evolutionary dynamics in viruses are hindered by a time-dependent bias in rate estimates , 2014, Proceedings of the Royal Society B: Biological Sciences.

[4]  Jianjun Chen,et al.  Perpetuation of H5N1 and H9N2 avian influenza viruses in natural water bodies. , 2014, The Journal of general virology.

[5]  Michael Worobey,et al.  Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus , 2014, Proceedings of the National Academy of Sciences.

[6]  Michael Worobey,et al.  A synchronized global sweep of the internal genes of modern avian influenza virus , 2014, Nature.

[7]  Hua Yang,et al.  New World Bats Harbor Diverse Influenza A Viruses , 2013, PLoS pathogens.

[8]  S. Spencer,et al.  Accumulation and Inactivation of Avian Influenza Virus by the Filter-Feeding Invertebrate Daphnia magna , 2013, Applied and Environmental Microbiology.

[9]  Sergei L. Kosakovsky Pond,et al.  FUBAR: a fast, unconstrained bayesian approximation for inferring selection. , 2013, Molecular biology and evolution.

[10]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[11]  M. Suchard,et al.  Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. , 2012, Molecular biology and evolution.

[12]  M. Aly,et al.  Antigenic Drift in H5N1 Avian Influenza Virus in Poultry Is Driven by Mutations in Major Antigenic Sites of the Hemagglutinin Molecule Analogous to Those for Human Influenza Virus , 2011, Journal of Virology.

[13]  M. Suchard,et al.  Bayesian random local clocks, or one rate to rule them all , 2010, BMC Biology.

[14]  A. Gibbs,et al.  Evolutionary dynamics of the N1 neuraminidases of the main lineages of influenza A viruses. , 2010, Molecular phylogenetics and evolution.

[15]  T. P. van den Berg,et al.  H5N1 High Pathogenicity Avian Influenza Virus Survival in Different Types of Water , 2010 .

[16]  Yi Guan,et al.  Dating the emergence of pandemic influenza viruses , 2009, Proceedings of the National Academy of Sciences.

[17]  Marc A. Suchard,et al.  Many-core algorithms for statistical phylogenetics , 2009, Bioinform..

[18]  E. Holmes,et al.  Hitchhiking and the Population Genetic Structure of Avian Influenza Virus , 2009, Journal of Molecular Evolution.

[19]  P. Buchy,et al.  Environmental Contamination during Influenza A Virus (H5N1) Outbreaks, Cambodia, 2006 , 2008, Emerging infectious diseases.

[20]  M. Suchard,et al.  Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. , 2008, Molecular biology and evolution.

[21]  C. Viboud,et al.  Explorer The genomic and epidemiological dynamics of human influenza A virus , 2016 .

[22]  Jonathan A. Runstadler,et al.  The Evolutionary Genetics and Emergence of Avian Influenza Viruses in Wild Birds , 2008, PLoS pathogens.

[23]  S. Edwards,et al.  Ecology of Avian Influenza Virus in Birds , 2008, The Journal of infectious diseases.

[24]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[25]  T. Tatusova,et al.  The Influenza Virus Resource at the National Center for Biotechnology Information , 2007, Journal of Virology.

[26]  D. Stallknecht,et al.  Persistence of H5 and H7 Avian Influenza Viruses in Water , 2007, Avian diseases.

[27]  S. Ho,et al.  Relaxed Phylogenetics and Dating with Confidence , 2006, PLoS biology.

[28]  Sergei L. Kosakovsky Pond,et al.  HyPhy: hypothesis testing using phylogenies , 2005, Bioinform..

[29]  Albert D. M. E. Osterhaus,et al.  Characterization of a Novel Influenza A Virus Hemagglutinin Subtype (H16) Obtained from Black-Headed Gulls , 2005, Journal of Virology.

[30]  T. Gojobori,et al.  A Large Variation in the Rates of Synonymous Substitution for RNA Viruses and Its Relationship to a Diversity of Viral Infection and Transmission Modes , 2004, Molecular biology and evolution.

[31]  H. Kishino,et al.  Estimating the rate of evolution of the rate of molecular evolution. , 1998, Molecular biology and evolution.

[32]  S. Muse,et al.  A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. , 1994, Molecular biology and evolution.

[33]  L. Kit,et al.  A revision of the system of nomenclature for influenza viruses: a WHO memorandum. , 1980, Bulletin of the World Health Organization.

[34]  W. J. Bean,et al.  Genetics of influenza virus. , 1978, Annual review of genetics.