Estimation of erosion, deposition, and net volumetric change caused by the 1996 Skeiðarársandur jökulhlaup, Iceland, from Synthetic Aperture Radar Interferometry

Using repeat‐pass satellite synthetic aperture radar interferometry, we develop a methodology to measure flood‐induced erosion and deposition and apply it to a record 1996 glacier outburst flood (jökulhlaup) on Skeiðarársandur, Iceland. The procedures include (1) coregistration of backscatter intensity images to observe morphological differences; (2) mapping of interferometric phase correlation to identify preserved and modified surfaces; and (3) construction, correction, and differencing of pre‐jökulhlaup and post‐jökulhlaup topography. Procedures 1 and 2 are robust and should be widely applicable to other fluvial environments, while procedure 3 is complicated by uncertainties in phase measurement, baseline estimate, and atmospheric effects. After a correction procedure involving interpolation of digital elevation model elevation differences across low‐correlation areas, we find ∼4 m of elevation change are required to calculate volumes of erosion or deposition. This condition was satisfied for the 40 km2 proglacial zone of Skeiðarársandur, where we estimate +38×106 m3 of net sediment deposition along the ice margin, −2 ×106 m3 of net erosion in channels downstream, and a total net balance of +13 × 106. These estimates are supported by field observations and survey data collected in 1997.

[1]  W. Krabill,et al.  Rapid thinning of parts of the southern greenland ice sheet , 1999, Science.

[2]  D. Alsdorf,et al.  Interferometric SAR observations of ice topography and velocity changes related to the 1996, Gjalp subglacial eruption, Iceland , 1999 .

[3]  Laurence C. Smith,et al.  Control on sediment and organic carbon delivery to the Arctic Ocean revealed with space-borne synthetic aperture radar: Ob' River, Siberia , 1998 .

[4]  J. C. Knox,et al.  Orbital SAR remote sensing of a river flood wave , 1998 .

[5]  Ian R. Joughin,et al.  Interferometric estimation of three-dimensional ice-flow using ascending and descending passes , 1998, IEEE Trans. Geosci. Remote. Sens..

[6]  Freysteinn Sigmundsson,et al.  Ice–volcano interaction of the 1996 Gjálp subglacial eruption, Vatnajökull, Iceland , 1997, Nature.

[7]  F. Sigmundsson,et al.  Center of the Iceland hotspot experiences volcanic unrest , 1997 .

[8]  T. Strozzi,et al.  Forest applications of ERS, JERS, and SIR-C SAR interferometry , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[9]  R. Oberstadler,et al.  Assessment of the mapping capabilities of ERS-1 SAR data for flood mapping: a case study in Germany , 1997 .

[10]  S. Clandillon,et al.  The contribution of spaceborne SAR and optical data in monitoring flood events: examples in northern and southern France , 1997 .

[11]  L. Smith Satellite remote sensing of river inundation area, stage, and discharge: a review , 1997 .

[12]  P. Rosen,et al.  Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps , 1997 .

[13]  K. Edgett,et al.  Catastrophic flood sediments in Chryse Basin, Mars, and Quincy Basin, Washington: Application of sandar facies model , 1997 .

[14]  A. Roth,et al.  Monitoring of Subglacial Volcanic Eruption and Glacial Flood in Southern Iceland Using ERS-1/2 SAR Data , 1997 .

[15]  Urs Wegmüller,et al.  Gamma SAR processor and interferometry software , 1997 .

[16]  J. Maizels Jökulhlaup deposits in proglacial areas , 1997 .

[17]  F. Webb,et al.  Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR C radar interferometry , 1996 .

[18]  L. Smith,et al.  Estimation of Discharge From Three Braided Rivers Using Synthetic Aperture Radar Satellite Imagery: Potential Application to Ungaged Basins , 1996 .

[19]  P. Rosen,et al.  Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements , 1996 .

[20]  Ronald Kwok,et al.  Ice sheet motion and topography from radar interferometry , 1996, IEEE Trans. Geosci. Remote. Sens..

[21]  Richard M. Goldstein,et al.  Atmospheric limitations to repeat‐track radar interferometry , 1995 .

[22]  Urs Wegmüller,et al.  SAR interferometric signatures of forest , 1995, IEEE Trans. Geosci. Remote. Sens..

[23]  Yong Wang,et al.  Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar , 1995, IEEE Trans. Geosci. Remote. Sens..

[24]  P. Rosen,et al.  Surface Displacement of the 17 May 1993 Eureka Valley, California, Earthquake Observed by SAR Interferometry , 1995, Science.

[25]  Laurence C. Smith,et al.  Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar: first results , 1995 .

[26]  M. Gudmundsson,et al.  Changes in jökulhlaup sizes in Grímsvötn, Vatnajökull, Iceland, 1934-91, deduced from in-situ measurements of subglacial lake volume , 1995, Journal of Glaciology.

[27]  James C. Knox,et al.  Radar remote sensing aids study of the Great Flood of 1993 , 1994 .

[28]  P. Rosen,et al.  On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[29]  Charles Werner,et al.  Accuracy of topographic maps derived from ERS-1 interferometric radar , 1994, IEEE Trans. Geosci. Remote. Sens..

[30]  A. Kehew,et al.  History of late glacial runoff along the southwestern margin of the Laurentide Ice Sheet , 1994 .

[31]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[32]  J. Maizels Lithofacies variations within sandur deposits: the role of runoff regime, flow dynamics and sediment supply characteristics , 1993 .

[33]  Thierry Rabaute,et al.  Radar interferometry: limits and potential , 1993, IEEE Trans. Geosci. Remote. Sens..

[34]  J. Maizels Quantitative regime modelling of fluvial depositional sequences: application to Holocene stratigraphy of humid-glacial braid-plains (Icelandic sandurs) , 1993, Geological Society, London, Special Publications.

[35]  Howard A. Zebker,et al.  Radar interferometry studies of the Earth's topography , 1992 .

[36]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[37]  Helgi Björnsson,et al.  Jökulhlaups in Iceland: prediction, characteristics and simulation , 1992, Annals of Glaciology.

[38]  J. Maizels The Origin and Evolution of Holocene Sandur Deposits in Areas of Jökulhlaup Drainage, Iceland , 1991 .

[39]  C. Werner,et al.  Satellite radar interferometry: Two-dimensional phase unwrapping , 1988 .

[40]  R. Goldstein,et al.  Crossed orbit interferometry: theory and experimental results from SIR-B , 1988 .

[41]  A. Kehew,et al.  Sedimentology and paleohydrology of glacial-lake outburst deposits in southeastern Saskatchewan and northwestern North Dakota , 1987 .

[42]  Marc L. Imhoff,et al.  Monsoon flood boundary delineation and damage assessment using space borne imaging radar and Landsat data , 1987 .

[43]  R. Goldstein,et al.  Topographic mapping from interferometric synthetic aperture radar observations , 1986 .

[44]  J. Boothroyd,et al.  Proglacial Braided Outwash: A Model for Humid Alluvial-Fan Deposits , 1977 .

[45]  V. Baker Paleohydrology and sedimentology of Lake Missoula flooding in eastern Washington , 1973 .